Machine:Magnets
Contents
- 1 Storage Ring Magnets
- 1.1 Storage Ring Dipoles
- 1.2 Storage Ring Quadrupoles
- 1.3 Storage Ring Sextupoles, Slow Orbit Correctors and Skew Quadrupoles
- 1.4 Storage Ring Vertical Corrector Magnets
- 1.5 Storage Ring Fast Orbit Correctors
- 1.6 Storage Ring Magnet Families
- 2 Booster Magnets
- 2.1 Booster Dipoles
- 2.2 Booster Quadrupoles
- 2.3 Booster Sextupoles
- 2.4 Booster Correctors
- 2.5 Booster Magnets Ramping Curve
- 2.6 Booster Magnets Installation
- 3 TB Transfer Line Magnets
- 4 TS Transfer Line Magnets
- 5 Magnet Colors
Storage Ring Magnets
At this point all magnets have been designed, simulated and approved. A few prototype magnets (quadrupoles) have been measured mechanical and magnetically. Overall magnetic measurements with rotating coil and Hall probe systems are still pending.
Storage Ring Dipoles
Dipoles in Sirius are of three distinct families: B1, B2 and BC. The first two, B1 and B2, are electromagnetic dipoles, whereas BC is a NdFeB permanent magnet dipole made of a thin 3.2 T slice sandwiched between two low field sector dipoles.
SI Dipole Magnet Specifications
Main Parameters
Main parameters for the electromagnetic dipoles B1 and B2 are shown in Table 1, and for the permanent magnet superbend BC in Table 2.
B1 | B2 | units | |
Excitation | monopolar power supply | monopolar power supply | |
Number of magnets | 40 | 40 | |
Deflection angle | 2.7553 | 4.0964 | ° |
Magnetic length | 0.853 | 1.263 | m |
Physical length | 0.807 | 1.21239 | m |
Integrated quadrupole strength1 | -0.6461 | -0.9588 | m-1 |
Integrated sextupole strength1 | 0.0 | 0.0 | m-2 |
Full central gap2 | 24.0 | 24.0 | mm |
Hardedge bending radius | 17.7379 | 17.6654 | m |
Hardedge quadrupole strength | -0.7574 | -0.7591 | m-2 |
Hardedge sextupole strength | 0.0 | 0.0 | m-3 |
Hardedge sagitta | 5.127 | 11.286 | mm |
Integrated field1 | -0.48 | -0.72 | T·m |
Integrated quadrupole gradient 1 | 6.4652 | 9.5946 | T |
Integrated sextupole gradient1 | 0.0 | 0.0 | T·m-1 |
Hardedge field | -0.5642 | -0.5665 | T |
Hardedge quadrupole gradient | 7.5794 | 7.5967 | T·m-1 |
Hardedge sextupole gradient | 0.0 | 0.0 | T·m-2 |
Quadrupole flexibility | 10.0 | 10.0 | % |
1 On the Runge-Kutta trajectory.
2 Full gap at the horizontal central position, where Runge-Kutta beam trajectory is centered.
BC | ||
Excitation | permanent NdFeB magnets | |
Number of magnets | 20 | |
Magnet length | 0.828 | m |
Magnetic arc length | 0.920 | m |
Deflection angle | 4.2966 | ° |
Peak field | 3.20 | T |
Full gap at peak field | 10.20 | mm |
Bending radius at peak field | 3.1272 | m |
Critical energy at peak field | 19.2 | keV |
Integrated field | -0.75042 | T·m |
Integrated gradient | 6.2511 | T |
Electric parameters
B1 | B2 | units | |
Main coil current | 394.10 | 394.10 | A |
Main coil number of turns | 24 | 24 | |
Stored magnetic energy | 677.32 | 1003.66 | J |
Magnet inductance | 8.72 | 12.92 | mH |
Multipole Errors
Multipole error | Systematic | Random | |
Normal | Normal | Skew | |
B2/B0 (sextupole) | 1.5×10-4 | 1.5×10-4 | 0.5×10-4 |
B3/B0 (octupole) | -7.2×10-5 | 1.5×10-4 | 0.5×10-4 |
B4/B0 (decapole) | -5.6×10-4 | 1.5×10-4 | 0.5×10-4 |
B5/B0 (12-pole) | 6.7×10-5 | 1.5×10-4 | 0.5×10-4 |
B6/B0 (14-pole) | 3.8×10-4 | - | - |
Alignment and Excitation Errors
Dipole Unit Blocks | Girders | ||
Transverse position, ![]() ![]() |
40 | 80 | μm |
Rotation around longitudinal axis | 0.30 | 0.30 | mrad |
Strength error (static or low frequency) | 0.05 | -- | % |
Dipole Gradient error | 0.1 | -- | % |
SI Dipole Magnet 3D Models
BC
The BC dipoles in the Sirius storage ring is composed of a central high field slice with 1.1395 ° of deflection and two flanking low field sectors with 1.57855 °. There is a control gap in the back of the dipole that can be used to adjust the magnetic field. Additionally, the low field poles can be moved transversely to adjust the integrated field and the pole between the low and high field sectors can be rotated about the longitudinal axis to correct the integrated quadrupole gradient.
Fieldmap Analysis
Nominally BC dipoles should deflect the beam in 4.2966 °. A 3D model of BC has been analyzed and approved. Fieldmap corresponding to one value for the control gap has been considered, namely 3.2 mm. A summary of the analysis can be found in analysis.txt
at this folder.
Segmented Model
In order to take into account the s-dependent field profile of the BC dipoles a symmetric model was created with 15 segments at each side of the magnet. Their segmentation points were chosen in a way to minimize the difference between integrals of the squared profile between for the model and the field on the Runge-Kutta trajectory.
Segment# | Length [m] | Deflection [deg.] | Field [T] | K [m-2] * | S [m-3] * |
01 | 0.0010 | 0.018 | -3.231 | -0.001 | -27.800 |
02 | 0.0040 | 0.072 | -3.153 | -0.005 | -24.800 |
03 | 0.0050 | 0.080 | -2.805 | -0.021 | -17.800 |
04 | 0.0050 | 0.068 | -2.371 | -0.027 | -11.000 |
05 | 0.0050 | 0.058 | -2.040 | -0.027 | -7.650 |
06 | 0.0100 | 0.096 | -1.672 | -0.026 | -5.620 |
07 | 0.0100 | 0.074 | -1.289 | -0.026 | -3.920 |
08 | 0.0100 | 0.056 | -0.980 | -0.025 | -2.380 |
09 | 0.0100 | 0.044 | -0.772 | -0.021 | -1.030 |
10 | 0.0320 | 0.116 | -0.631 | -0.023 | +0.903 |
11 | 0.0320 | 0.097 | -0.528 | -0.148 | +0.286 |
12 | 0.1600 | 0.625 | -0.682 | -0.888 | +0.341 |
13 | 0.1600 | 0.628 | -0.686 | -0.903 | +0.177 |
14 | 0.0120 | 0.043 | -0.622 | -0.874 | +0.068 |
15 | 0.0140 | 0.033 | -0.418 | -0.434 | -2.100 |
16 | 0.0160 | 0.019 | -0.212 | -0.107 | -2.050 |
17 | 0.0350 | 0.020 | -0.099 | -0.019 | -1.180 |
* K=B'/(Bρ), S=B"/(2Bρ)
B1
Fieldmap Analysis
Nominally B1 dipoles should deflect the beam in 2.7553 °. So far a preliminary 3D model of B1 has been analyzed and approved. Field map corresponding to the nominal excited field has been considered. The latest analyzed fieldmap can be accessed here. A summary of the analysis can be found in analysis.txt
at accessed this folder.
Segmented Model
In order to take into account the s-dependent field profile of the B1 dipoles a symmetric model was created with 15 segments at each side of the magnet. Their segmentation points were chosen in a way to minimize the difference between integrals of the squared profile between for the model and the field on the Runge-Kutta trajectory.
Segment# | Length [m] | Deflection [deg.] | Field [T] | K [m-2] * | S [m-3] * |
01 | 0.0020 | 0.006 | -0.562 | -0.753 | -0.297 |
02 | 0.0030 | 0.010 | -0.562 | -0.756 | -0.245 |
03 | 0.0050 | 0.016 | -0.564 | -0.762 | -0.117 |
04 | 0.0050 | 0.016 | -0.566 | -0.770 | -0.015 |
05 | 0.0050 | 0.016 | -0.567 | -0.774 | +0.004 |
06 | 0.0100 | 0.033 | -0.568 | -0.775 | -0.003 |
07 | 0.0400 | 0.130 | -0.567 | -0.774 | +0.019 |
08 | 0.1500 | 0.483 | -0.563 | -0.773 | +0.055 |
09 | 0.1000 | 0.322 | -0.563 | -0.773 | +0.076 |
10 | 0.0500 | 0.162 | -0.565 | -0.774 | +0.008 |
11 | 0.0340 | 0.105 | -0.540 | -0.777 | -0.159 |
12 | 0.0160 | 0.033 | -0.363 | -0.428 | -2.230 |
13 | 0.0400 | 0.033 | -0.143 | -0.085 | -1.960 |
14 | 0.0400 | 0.008 | -0.034 | -0.009 | -0.428 |
15 | 0.0500 | 0.005 | -0.016 | -0.001 | -0.102 |
* K=B'/(Bρ), S=B"/(2Bρ)
B2
Fieldmap Analysis
Nominally B1 dipoles should deflect the beam in 4.0964 °. So far a preliminary 3D model of B2 has been analyzed and approved. Field map corresponding to the nominal excited field has been considered. The latest analyzed fieldmap can be accessed here. A summary of the analysis can be found in analysis.txt
at accessed this folder.
Segmented Model
In order to take into account the s-dependent field profile of the B2 dipoles a symmetric model was created with 17 segments at each side of the magnet. Their segmentation points were chosen in a way to minimize the difference between integrals of the squared profile between for the model and the field on the Runge-Kutta trajectory.
Segment# | Length [m] | Deflection [deg.] | Field [T] | K [m-2] * | S [m-3] * |
01 | 0.1250 | 0.405 | -0.566 | -0.774 | +0.045 |
02 | 0.0550 | 0.179 | -0.569 | -0.774 | +0.028 |
03 | 0.0100 | 0.033 | -0.570 | -0.774 | +0.018 |
04 | 0.0050 | 0.016 | -0.568 | -0.767 | -0.019 |
05 | 0.0050 | 0.016 | -0.566 | -0.759 | -0.150 |
06 | 0.0050 | 0.016 | -0.565 | -0.753 | -0.268 |
07 | 0.0050 | 0.016 | -0.566 | -0.756 | -0.195 |
08 | 0.0100 | 0.033 | -0.568 | -0.768 | -0.011 |
09 | 0.0100 | 0.033 | -0.570 | -0.774 | +0.022 |
10 | 0.1750 | 0.568 | -0.567 | -0.773 | +0.081 |
11 | 0.1750 | 0.567 | -0.566 | -0.773 | +0.107 |
12 | 0.0200 | 0.063 | -0.553 | -0.791 | -0.030 |
13 | 0.0100 | 0.028 | -0.480 | -0.682 | -0.204 |
14 | 0.0150 | 0.030 | -0.345 | -0.361 | -2.440 |
15 | 0.0200 | 0.022 | -0.192 | -0.108 | -2.480 |
16 | 0.0300 | 0.014 | -0.084 | -0.026 | -1.220 |
17 | 0.0320 | 0.005 | -0.029 | -0.005 | -0.359 |
18 | 0.0325 | 0.004 | -0.022 | -0.001 | -0.149 |
* K=B'/(Bρ), S=B"/(2Bρ)
SI Dipole Magnet Measurements
A summary of magnet field measurements of SI BC dipole. The Hall probe measurement files can be found at this folder.
BC
Analysis of BC hallprobe measurements. The analysis results can be found at this folder with subfolders x0-0p0079mm which contains results based on Runge-Kutta trajectory and x0-0p0079mm-reftraj holds the results based on reference trajectory. The initial x coordinate used was + 79um. The reference point is 7.703087 mm for reference trajectory.
Summary
rx position of reference point: +7.703087 mm initial rx position of trajectory: +0.079092 mm /---------------------------------------------------------------------------------------\ | DeflectionAngle[deg] | KL[1/m] | SL[1/m²] | | Avg ± Std MaxMin | Avg ± Std MaxMin | Avg ± Std MaxMin | /--------|------------------------------|-----------------------------|--------------------------| | BC | +2.14829 ± 0.00016 0.00060 | -0.3127 ± 0.0002 0.0008 | -0.35 ± 0.074 0.24 | | Diff[%]| -0.00048 ± 0.00743 0.02801 | -0.0554 ± 0.0595 0.2446 | 21.05 ± 16.75 54.60 | \------------------------------------------------------------------------------------------------/
The values used to calculate the difference to model were:
Deflection angle: 2.1483 deg
KL: - 0.31267 1/m
SL: -0.35037 1/m²
Deflection Angle
Integrated Quadrupole
Integrated Sextupole
B1
Analysis of B1 hallprobe measurements. The analysis results can be found at this folder with subfolders x0-8p527mm which contains results based on Runge-Kutta trajectory and x0-8p527mm-reftraj holds the results based on reference trajectory. The initial point of reference trajectory is 8.5270 mm and reference point is 13.6929 mm.
Summary
rx position of reference point: +13.692930 mm initial rx position of trajectory: +8.527000 mm /---------------------------------------------------------------------------------------\ | DeflectionAngle[deg] | KL[1/m] | SL[1/m²] | | Avg ± Std MaxMin | Avg ± Std MaxMin | Avg ± Std MaxMin | /--------|------------------------------|-----------------------------|--------------------------| | B1 | +1.37760 ± 0.00029 0.00103 | -0.3228 ± 0.0002 0.0007 | -0.096 ± 0.015 0.056 | | Diff[%]| -0.00354 ± 0.02085 0.07471 | +0.0393 ± 0.0623 0.2133 | +11.08 ± 13.95 52.17 | \------------------------------------------------------------------------------------------------/
The values used to calculate the difference to model were:
Deflection angle: 1.37765 deg
KL: -0.32289 1/m
SL: -0.10763 1/m²
Deflection Angle
Integrated Quadrupole
Integrated Sextupole
B2
Analysis of B2 hallprobe measurements. The analysis results can be found at this folder with subfolders x0-8p153mm which contains results based on Runge-Kutta trajectory and x0-8p153mm-reftraj holds the results based on reference trajectory. The initial point of reference trajectory is 8.1530 mm and reference point is 19.4278 mm.
Summary
rx position of reference point: +19.427847 mm initial rx position of trajectory: +8.153000 mm /---------------------------------------------------------------------------------------\ | DeflectionAngle[deg] | KL[1/m] | SL[1/m²] | | Avg ± Std MaxMin | Avg ± Std MaxMin | Avg ± Std MaxMin | /--------|------------------------------|-----------------------------|--------------------------| | B2 | +2.04820 ± 0.00045 0.00146 | -0.4794 ± 0.0003 0.0011 | -0.096 ± 0.011 0.058 | | Diff[%]| -0.00011 ± 0.02175 0.07151 | +0.0841 ± 0.0596 0.2288 | +2.388 ± 11.45 58.42 | \------------------------------------------------------------------------------------------------/
The values used to calculate the difference to model were:
Deflection angle: 2.0482 deg
KL: -0.47982 1/m
SL: -0.09868 1/m²
Deflection Angle
Integrated Quadrupole
Integrated Sextupole
SI Dipole Magnet Sorting
B1 Installation Order
Magnet Name | Magnet Serial ID |
SI-01C1:MA-B1 | B1-025 |
SI-01C4:MA-B1 | B1-040 |
SI-02C1:MA-B1 | B1-003 |
SI-02C4:MA-B1 | B1-031 |
SI-03C1:MA-B1 | B1-029 |
SI-03C4:MA-B1 | B1-038 |
SI-04C1:MA-B1 | B1-004 |
SI-04C4:MA-B1 | B1-005 |
SI-05C1:MA-B1 | B1-024 |
SI-05C4:MA-B1 | B1-016 |
SI-06C1:MA-B1 | B1-012 |
SI-06C4:MA-B1 | B1-030 |
SI-07C1:MA-B1 | B1-018 |
SI-07C4:MA-B1 | B1-011 |
SI-08C1:MA-B1 | B1-033 |
SI-08C4:MA-B1 | B1-013 |
SI-09C1:MA-B1 | B1-015 |
SI-09C4:MA-B1 | B1-042 |
SI-10C1:MA-B1 | B1-021 |
SI-10C4:MA-B1 | B1-019 |
SI-11C1:MA-B1 | B1-043 |
SI-11C4:MA-B1 | B1-009 |
SI-12C1:MA-B1 | B1-036 |
SI-12C4:MA-B1 | B1-034 |
SI-13C1:MA-B1 | B1-020 |
SI-13C4:MA-B1 | B1-010 |
SI-14C1:MA-B1 | B1-027 |
SI-14C4:MA-B1 | B1-002 |
SI-15C1:MA-B1 | B1-023 |
SI-15C4:MA-B1 | B1-014 |
SI-16C1:MA-B1 | B1-035 |
SI-16C4:MA-B1 | B1-032 |
SI-17C1:MA-B1 | B1-039 |
SI-17C4:MA-B1 | B1-017 |
SI-18C1:MA-B1 | B1-028 |
SI-18C4:MA-B1 | B1-037 |
SI-19C1:MA-B1 | B1-006 |
SI-19C4:MA-B1 | B1-046 |
SI-20C1:MA-B1 | B1-041 |
SI-20C4:MA-B1 | B1-026 |
Not Used | |
---|---|
Magnet Name | Magnet Serial ID |
--- | B1-022 |
B2 Installation Order
Magnet Name | Magnet Serial ID |
SI-01C2:MA-B2 | B2-002 |
SI-01C3:MA-B2 | B2-001 |
SI-02C2:MA-B2 | B2-010 |
SI-02C3:MA-B2 | B2-011 |
SI-03C2:MA-B2 | B2-017 |
SI-03C3:MA-B2 | B2-014 |
SI-04C2:MA-B2 | B2-032 |
SI-04C3:MA-B2 | B2-043 |
SI-05C2:MA-B2 | B2-022 |
SI-05C3:MA-B2 | B2-045 |
SI-06C2:MA-B2 | B2-004 |
SI-06C3:MA-B2 | B2-015 |
SI-07C2:MA-B2 | B2-023 |
SI-07C3:MA-B2 | B2-037 |
SI-08C2:MA-B2 | B2-008 |
SI-08C3:MA-B2 | B2-013 |
SI-09C2:MA-B2 | B2-019 |
SI-09C3:MA-B2 | B2-030 |
SI-10C2:MA-B2 | B2-033 |
SI-10C3:MA-B2 | B2-007 |
SI-11C2:MA-B2 | B2-042 |
SI-11C3:MA-B2 | B2-016 |
SI-12C2:MA-B2 | B2-034 |
SI-12C3:MA-B2 | B2-018 |
SI-13C2:MA-B2 | B2-036 |
SI-13C3:MA-B2 | B2-038 |
SI-14C2:MA-B2 | B2-021 |
SI-14C3:MA-B2 | B2-005 |
SI-15C2:MA-B2 | B2-006 |
SI-15C3:MA-B2 | B2-029 |
SI-16C2:MA-B2 | B2-003 |
SI-16C3:MA-B2 | B2-027 |
SI-17C2:MA-B2 | B2-040 |
SI-17C3:MA-B2 | B2-044 |
SI-18C2:MA-B2 | B2-031 |
SI-18C3:MA-B2 | B2-028 |
SI-19C2:MA-B2 | B2-026 |
SI-19C3:MA-B2 | B2-025 |
SI-20C2:MA-B2 | B2-046 |
SI-20C3:MA-B2 | B2-009 |
Not Used | |
---|---|
Magnet Name | Magnet Serial ID |
--- | B2-024 |
Storage Ring Quadrupoles
There will be three types of quadrupole magnets in the Sirius lattice: Q14, Q20 and Q30, labeled as such according to their hard-edge lengths in simulations. Magnets from families QDA, QDB1, QDB2, QDP1 and QDP2 will be of type Q14; magnets from families QFA, Q1, Q2, Q3 and Q4 will be of type Q20; and magnets from families QFB and QFP will be of type Q30.
SI Quadrupole Magnet Specifications
Main Parameters
Table 11 lists main specifications for the quadrupoles.
Q14 | Q20 | Q30 | units | |
Number of magnets | 70 | 170 | 30 | |
Magnetic length 1 | 0.140 | 0.200 | 0.300 | m |
Maximum strength 1 | 3.72 | 4.54 | 4.54 | m-2 |
Bore diameter | 28 | 28 | 28 | mm |
Field flexibility for individual quadrupole 2 | ± 10 | ± 5 | ± 5 | % |
Maximum integrated strength 3 | 0.5208 | 0.908 | 1.362 | m-1 |
Maximum integrated field gradient 3 | 5.21 | 9.09 | 13.63 | T |
Maximum field gradient 3 | 37.23 | 45.43 | 45.43 | T·m-1 |
Maximum field at pole tip 3 | 0.52 | 0.64 | 0.64 | T |
1 Maximum values required for excitation with the main coils only.
2 Obtained with trim coils.
3 Derived parameters from base specification parameters.Electric parameters
Q14 | Q20 | Q30 | units | |
Main coil current | 146.60 | 154.66 | 153.80 | A |
Main coil number of turns | 20.00 | 23.25 | 23.25 | |
Maximum trim coil current | 10.00 | 10.00 | 10.00 | A |
Trim coil number of turns | 28.00 | 18.00 | 18.00 | |
Stored magnetic energy | 72.45 | 140.33 | 211.01 | J |
Magnet inductance | 6.74 | 11.73 | 17.84 | mH |
Multipole Errors
Multipole error | Q14 Systematic Normal |
Q20 Systematic Normal |
Q30 Systematic Normal |
Random | |
Normal | Skew | ||||
B2/B1 (sextupole) | 1.5×10-4 | 0.5×10-4 | |||
B3/B1 (octupole) | 1.5×10-4 | 0.5×10-4 | |||
B4/B1 (decapole) | 1.5×10-4 | 0.5×10-4 | |||
B5/B1 (12-pole) | -3.9×10-4 | -4.1×10-4 | -4.3×10-4 | 1.5×10-4 | 0.5×10-4 |
B9/B1 (20-pole) | +1.7×10-3 | +1.7×10-3 | +1.8×10-3 | ||
B13/B1 (20-pole) | -8.0×10-4 | -7.7×10-4 | -8.1×10-4 | ||
B17/B1 (20-pole) | +8.5×10-5 | +5.9×10-5 | +7.2×10-5 |
Alignment and Excitation Errors
Quadrupoles | ||
Transverse position, ![]() ![]() |
40 | μm |
Rotation around longitudinal axis | 0.30 | mrad |
Strength error (static or low frequency) | 0.05 | % |
SI Quadrupole Magnet 3D Models
All three types of quadrupoles models, namely Q14, Q20 and Q30 quadrupoles, have been designed, analyzed and approved.
Fieldmap Analysis
Q14
The 3D magnetic model of Q14 has been analyzed and approved, corresponding to maximum quadrupole strength, both family and trim coils excited. Analysis data for the latest model fieldmap can be accessed here. A summary of the analysis can be found in analysis.txt
at this folder.
Q20
The 3D magnetic model of Q20 has been analyzed and approved, corresponding to maximum quadrupole strength, both family and trim coils excited. Analysis data for the latest model fieldmap can be accessed here. A summary of the analysis can be found in analysis.txt
at this folder.
Q30
The 3D magnetic model of Q30 has been analyzed and approved, corresponding to maximum quadrupole strength, both family and trim coils excited. Analysis data for the latest model fieldmap can be accessed here. A summary of the analysis can be found in analysis.txt
at this folder.
Table 15 brings the main fieldmap analysis results.
Q14 | Q20 | Q30 | units | |
Physical length 1 | 0.1255 | 0.1865 | 0.2890 | m |
Magnetic length 2 | 0.1401 | 0.2001 | 0.3003 | m |
Maximum main coil current | 160 / 3040 | 150 / 3600 | 150 / 3600 | A / A.turns |
Maximum trim coil current | 10 / 180 | 10 / 180 | 10 / 180 | A / A.turns |
Maximum integrated field gradient | 5.730 | 9.611 | 14.44 | T |
Relative multipole (n=5) 3 | -2.7×10-4 | -3.2×10-4 | -4.4×10-4 | |
Relative multipole (n=9) 3 | +1.5×10-3 | +1.7×10-3 | +1.8×10-3 | |
Relative multipole (n=13) 3 | -6.3×10-4 | -6.5×10-4 | -6.7×10-4 |
1 with end plates but without coils.
2 integrated gradient divided by gradient at longitudinal center.
3 normal integrated multipoles divided by integrated quadrupole at x = 11.7 mm.Segmented Model
Currently the hard-edge approximation is being used to model all quadrupoles for beam dynamics calculations purposes.
Segment# | Length [m] | Deflection [deg.] | Field [T] | K [m-2] * | S [m-3] * |
01 | 0.0700 | 0.000 | -0.000e+00 | -4.090e+00 | -0.000e+00 |
* K=B'/(Bρ), S=B"/(2Bρ)
Segment# | Length [m] | Deflection [deg.] | Field [T] | K [m-2] * | S [m-3] * |
01 | 0.1000 | 0.000 | -0.000e+00 | -4.800e+00 | -0.000e+00 |
* K=B'/(Bρ), S=B"/(2Bρ)
Segment# | Length [m] | Deflection [deg.] | Field [T] | K [m-2] * | S [m-3] * |
01 | 0.1500 | 0.000 | -0.000e+00 | -4.810e+00 | -0.000e+00 |
* K=B'/(Bρ), S=B"/(2Bρ)
SI Quadrupole Magnet Measurements
A summary of magnet field measurements of SI quadrupoles.
Q14
Summary
/-------------------------------------------------------------------------------------------------\ | IntQuad[T] | XCenter[um] | YCenter[um] | RollError[mrad] | | Avg ± Std MaxMin | Avg ± Std MaxMin | Avg ± Std MaxMin | Avg ± Std MaxMin | /--------|----------------------------|----------------------|-----------------------|---------------------| | QDA | +5.2405 ± 0.0024 0.0074 | -0.1 ± 5.4 20.3 | +5.6 ± 4.3 13.4 | -0.4 ± 0.1 0.2 | | QDB1 | +5.2373 ± 0.0030 0.0125 | +2.0 ± 5.7 24.9 | +3.5 ± 5.2 24.6 | -0.3 ± 0.1 0.4 | | QDB2 | +5.2338 ± 0.0013 0.0044 | +0.1 ± 7.3 28.0 | +3.4 ± 4.2 15.6 | -0.3 ± 0.1 0.6 | | QDP1 | +5.2365 ± 0.0021 0.0070 | +4.7 ± 5.5 17.8 | +3.6 ± 3.2 11.4 | -0.4 ± 0.1 0.2 | | QDP2 | +5.2365 ± 0.0012 0.0042 | -2.1 ± 5.4 15.6 | +4.5 ± 5.3 17.9 | -0.4 ± 0.1 0.3 | \----------------------------------------------------------------------------------------------------------/
Integrated Quadrupole
Horizontal Magnetic Center
Vertical Magnetic Center
Roll-Angle Error
Q20
Summary
.--------------------------------------------------------------------------------------------------. | IntQuad[T] | XCenter[um] | YCenter[um] | RollError[mrad] | | Avg ± Std MaxMin | Avg ± Std MaxMin | Avg ± Std MaxMin | Avg ± Std MaxMin | . --------|----------------------------|-----------------------|-----------------------|---------------------| | QFA | -9.0805 ± 0.0047 0.0173 | +8.4 ± 3.0 10.2 | +6.8 ± 5.6 16.0 | +0.0 ± 0.1 0.4 | | Q1 | -9.0995 ± 0.0071 0.0278 | +5.7 ± 6.6 30.4 | +3.8 ± 5.0 22.4 | +0.1 ± 0.1 0.5 | | Q2 | -9.0855 ± 0.0042 0.0160 | +7.1 ± 5.1 22.0 | +4.0 ± 5.5 28.5 | +0.1 ± 0.1 0.4 | | Q3 | -9.0883 ± 0.0057 0.0235 | +6.5 ± 5.9 25.5 | +4.0 ± 6.6 31.4 | +0.0 ± 0.1 0.3 | | Q4 | -9.0790 ± 0.0059 0.0236 | +7.8 ± 5.5 26.2 | +3.5 ± 4.4 20.8 | +0.1 ± 0.1 0.4 | .------------------------------------------------------------------------------------------------------------.
Integrated Quadrupole
Horizontal Magnetic Center
Vertical Magnetic Center
Roll-Angle Error
Q30
Summary
.-----------------------------------------------------------------------------------------------------. | IntQuad[T] | XCenter[um] | YCenter[um] | RollError[mrad] | | Avg ± Std MaxMin | Avg ± Std MaxMin | Avg ± Std MaxMin | Avg ± Std MaxMin | . --------|----------------------------|-----------------------|------------------------|-----------------------| | QFB | -13.6385 ± 0.0050 0.0215 | +0.6 ± 7.1 28.9 | -1.8 ± 4.5 18.0 | -0.3 ± 0.05 0.2 | | QFP | -13.6295 ± 0.0038 0.0127 | -4.2 ± 5.1 18.8 | -2.8 ± 4.0 13.2 | -0.2 ± 0.1 0.3 | .---------------------------------------------------------------------------------------------------------------.
Integrated Quadrupole
Horizontal Magnetic Center
Vertical Magnetic Center
Roll-Angle Error
SI Quadrupole Magnet Sorting
Q14 Installation Order
QDA | |
---|---|
Magnet Name | Magnet Serial ID |
SI-01M2:MA-QDA | Q14-081 |
SI-05M1:MA-QDA | Q14-077 |
SI-05M2:MA-QDA | Q14-028 |
SI-09M1:MA-QDA | Q14-059 |
SI-09M2:MA-QDA | Q14-062 |
SI-13M1:MA-QDA | Q14-058 |
SI-13M2:MA-QDA | Q14-040 |
SI-17M1:MA-QDA | Q14-034 |
SI-17M2:MA-QDA | Q14-068 |
SI-01M1:MA-QDA | Q14-018 |
QDB1 | |
Magnet Name | Magnet Serial ID |
SI-02M1:MA-QDB1 | Q14-010 |
SI-02M2:MA-QDB1 | Q14-017 |
SI-04M1:MA-QDB1 | Q14-011 |
SI-04M2:MA-QDB1 | Q14-008 |
SI-06M1:MA-QDB1 | Q14-023 |
SI-06M2:MA-QDB1 | Q14-035 |
SI-08M1:MA-QDB1 | Q14-048 |
SI-08M2:MA-QDB1 | Q14-075 |
SI-10M1:MA-QDB1 | Q14-021 |
SI-10M2:MA-QDB1 | Q14-055 |
SI-12M1:MA-QDB1 | Q14-014 |
SI-12M2:MA-QDB1 | Q14-033 |
SI-14M1:MA-QDB1 | Q14-026 |
SI-14M2:MA-QDB1 | Q14-067 |
SI-16M1:MA-QDB1 | Q14-057 |
SI-16M2:MA-QDB1 | Q14-027 |
SI-18M1:MA-QDB1 | Q14-079 |
SI-18M2:MA-QDB1 | Q14-009 |
SI-20M1:MA-QDB1 | Q14-025 |
SI-20M2:MA-QDB1 | Q14-053 |
QDB2 | |
Magnet Name | Magnet Serial ID |
SI-02M1:MA-QDB2 | Q14-039 |
SI-02M2:MA-QDB2 | Q14-050 |
SI-04M1:MA-QDB2 | Q14-038 |
SI-04M2:MA-QDB2 | Q14-020 |
SI-06M1:MA-QDB2 | Q14-045 |
SI-06M2:MA-QDB2 | Q14-047 |
SI-08M1:MA-QDB2 | Q14-064 |
SI-08M2:MA-QDB2 | Q14-046 |
SI-10M1:MA-QDB2 | Q14-032 |
SI-10M2:MA-QDB2 | Q14-030 |
SI-12M1:MA-QDB2 | Q14-065 |
SI-12M2:MA-QDB2 | Q14-056 |
SI-14M1:MA-QDB2 | Q14-049 |
SI-14M2:MA-QDB2 | Q14-054 |
SI-16M1:MA-QDB2 | Q14-063 |
SI-16M2:MA-QDB2 | Q14-004 |
SI-18M1:MA-QDB2 | Q14-015 |
SI-18M2:MA-QDB2 | Q14-066 |
SI-20M1:MA-QDB2 | Q14-060 |
SI-20M2:MA-QDB2 | Q14-052 |
QDP1 | |
Magnet Name | Magnet Serial ID |
SI-03M1:MA-QDP1 | Q14-069 |
SI-03M2:MA-QDP1 | Q14-072 |
SI-07M1:MA-QDP1 | Q14-019 |
SI-07M2:MA-QDP1 | Q14-031 |
SI-11M1:MA-QDP1 | Q14-041 |
SI-11M2:MA-QDP1 | Q14-070 |
SI-15M1:MA-QDP1 | Q14-051 |
SI-15M2:MA-QDP1 | Q14-042 |
SI-19M1:MA-QDP1 | Q14-029 |
SI-19M2:MA-QDP1 | Q14-061 |
QDP2 | |
Magnet Name | Magnet Serial ID |
SI-03M1:MA-QDP2 | Q14-012 |
SI-03M2:MA-QDP2 | Q14-005 |
SI-07M1:MA-QDP2 | Q14-078 |
SI-07M2:MA-QDP2 | Q14-071 |
SI-11M1:MA-QDP2 | Q14-007 |
SI-11M2:MA-QDP2 | Q14-006 |
SI-15M1:MA-QDP2 | Q14-073 |
SI-15M2:MA-QDP2 | Q14-016 |
SI-19M1:MA-QDP2 | Q14-037 |
SI-19M2:MA-QDP2 | Q14-002 |
Not Used | |
Magnet Name | Magnet Serial ID |
--- | Q14-044 |
--- | Q14-074 |
--- | Q14-043 |
--- | Q14-013 |
--- | Q14-024 |
--- | Q14-076 |
--- | Q14-080 |
--- | Q14-036 |
Q20 Installation Order
QFA | |
---|---|
Magnet Name | Magnet Serial ID |
SI-01M2:MA-QFA | Q20-076 |
SI-05M1:MA-QFA | Q20-079 |
SI-05M2:MA-QFA | Q20-176 |
SI-09M1:MA-QFA | Q20-074 |
SI-09M2:MA-QFA | Q20-101 |
SI-13M1:MA-QFA | Q20-162 |
SI-13M2:MA-QFA | Q20-155 |
SI-17M1:MA-QFA | Q20-095 |
SI-17M2:MA-QFA | Q20-071 |
SI-01M1:MA-QFA | Q20-049 |
Q1 | |
Magnet Name | Magnet Serial ID |
SI-01C1:MA-Q1 | Q20-030 |
SI-01C4:MA-Q1 | Q20-132 |
SI-02C1:MA-Q1 | Q20-013 |
SI-02C4:MA-Q1 | Q20-014 |
SI-03C1:MA-Q1 | Q20-027 |
SI-03C4:MA-Q1 | Q20-008 |
SI-04C1:MA-Q1 | Q20-029 |
SI-04C4:MA-Q1 | Q20-023 |
SI-05C1:MA-Q1 | Q20-149 |
SI-05C4:MA-Q1 | Q20-028 |
SI-06C1:MA-Q1 | Q20-036 |
SI-06C4:MA-Q1 | Q20-033 |
SI-07C1:MA-Q1 | Q20-020 |
SI-07C4:MA-Q1 | Q20-015 |
SI-08C1:MA-Q1 | Q20-125 |
SI-08C4:MA-Q1 | Q20-153 |
SI-09C1:MA-Q1 | Q20-025 |
SI-09C4:MA-Q1 | Q20-067 |
SI-10C1:MA-Q1 | Q20-035 |
SI-10C4:MA-Q1 | Q20-141 |
SI-11C1:MA-Q1 | Q20-119 |
SI-11C4:MA-Q1 | Q20-012 |
SI-12C1:MA-Q1 | Q20-111 |
SI-12C4:MA-Q1 | Q20-006 |
SI-13C1:MA-Q1 | Q20-164 |
SI-13C4:MA-Q1 | Q20-024 |
SI-14C1:MA-Q1 | Q20-010 |
SI-14C4:MA-Q1 | Q20-032 |
SI-15C1:MA-Q1 | Q20-011 |
SI-15C4:MA-Q1 | Q20-005 |
SI-16C1:MA-Q1 | Q20-039 |
SI-16C4:MA-Q1 | Q20-109 |
SI-17C1:MA-Q1 | Q20-016 |
SI-17C4:MA-Q1 | Q20-009 |
SI-18C1:MA-Q1 | Q20-026 |
SI-18C4:MA-Q1 | Q20-037 |
SI-19C1:MA-Q1 | Q20-038 |
SI-19C4:MA-Q1 | Q20-017 |
SI-20C1:MA-Q1 | Q20-007 |
SI-20C4:MA-Q1 | Q20-021 |
Q2 | |
Magnet Name | Magnet Serial ID |
SI-01C1:MA-Q2 | Q20-096 |
SI-01C4:MA-Q2 | Q20-034 |
SI-02C1:MA-Q2 | Q20-092 |
SI-02C4:MA-Q2 | Q20-122 |
SI-03C1:MA-Q2 | Q20-136 |
SI-03C4:MA-Q2 | Q20-174 |
SI-04C1:MA-Q2 | Q20-056 |
SI-04C4:MA-Q2 | Q20-059 |
SI-05C1:MA-Q2 | Q20-128 |
SI-05C4:MA-Q2 | Q20-115 |
SI-06C1:MA-Q2 | Q20-126 |
SI-06C4:MA-Q2 | Q20-158 |
SI-07C1:MA-Q2 | Q20-073 |
SI-07C4:MA-Q2 | Q20-087 |
SI-08C1:MA-Q2 | Q20-137 |
SI-08C4:MA-Q2 | Q20-082 |
SI-09C1:MA-Q2 | Q20-050 |
SI-09C4:MA-Q2 | Q20-117 |
SI-10C1:MA-Q2 | Q20-105 |
SI-10C4:MA-Q2 | Q20-124 |
SI-11C1:MA-Q2 | Q20-120 |
SI-11C4:MA-Q2 | Q20-118 |
SI-12C1:MA-Q2 | Q20-134 |
SI-12C4:MA-Q2 | Q20-135 |
SI-13C1:MA-Q2 | Q20-068 |
SI-13C4:MA-Q2 | Q20-098 |
SI-14C1:MA-Q2 | Q20-072 |
SI-14C4:MA-Q2 | Q20-175 |
SI-15C1:MA-Q2 | Q20-178 |
SI-15C4:MA-Q2 | Q20-104 |
SI-16C1:MA-Q2 | Q20-046 |
SI-16C4:MA-Q2 | Q20-154 |
SI-17C1:MA-Q2 | Q20-167 |
SI-17C4:MA-Q2 | Q20-094 |
SI-18C1:MA-Q2 | Q20-062 |
SI-18C4:MA-Q2 | Q20-102 |
SI-19C1:MA-Q2 | Q20-131 |
SI-19C4:MA-Q2 | Q20-138 |
SI-20C1:MA-Q2 | Q20-065 |
SI-20C4:MA-Q2 | Q20-152 |
Q3 | |
Magnet Name | Magnet Serial ID |
SI-01C2:MA-Q3 | Q20-066 |
SI-01C3:MA-Q3 | Q20-061 |
SI-02C2:MA-Q3 | Q20-091 |
SI-02C3:MA-Q3 | Q20-004 |
SI-03C2:MA-Q3 | Q20-147 |
SI-03C3:MA-Q3 | Q20-114 |
SI-04C2:MA-Q3 | Q20-112 |
SI-04C3:MA-Q3 | Q20-165 |
SI-05C2:MA-Q3 | Q20-107 |
SI-05C3:MA-Q3 | Q20-019 |
SI-06C2:MA-Q3 | Q20-179 |
SI-06C3:MA-Q3 | Q20-106 |
SI-07C2:MA-Q3 | Q20-148 |
SI-07C3:MA-Q3 | Q20-108 |
SI-08C2:MA-Q3 | Q20-070 |
SI-08C3:MA-Q3 | Q20-159 |
SI-09C2:MA-Q3 | Q20-121 |
SI-09C3:MA-Q3 | Q20-045 |
SI-10C2:MA-Q3 | Q20-042 |
SI-10C3:MA-Q3 | Q20-130 |
SI-11C2:MA-Q3 | Q20-161 |
SI-11C3:MA-Q3 | Q20-075 |
SI-12C2:MA-Q3 | Q20-127 |
SI-12C3:MA-Q3 | Q20-022 |
SI-13C2:MA-Q3 | Q20-145 |
SI-13C3:MA-Q3 | Q20-133 |
SI-14C2:MA-Q3 | Q20-172 |
SI-14C3:MA-Q3 | Q20-129 |
SI-15C2:MA-Q3 | Q20-018 |
SI-15C3:MA-Q3 | Q20-142 |
SI-16C2:MA-Q3 | Q20-139 |
SI-16C3:MA-Q3 | Q20-113 |
SI-17C2:MA-Q3 | Q20-140 |
SI-17C3:MA-Q3 | Q20-170 |
SI-18C2:MA-Q3 | Q20-110 |
SI-18C3:MA-Q3 | Q20-044 |
SI-19C2:MA-Q3 | Q20-086 |
SI-19C3:MA-Q3 | Q20-177 |
SI-20C2:MA-Q3 | Q20-031 |
SI-20C3:MA-Q3 | Q20-064 |
Q4 | |
Magnet Name | Magnet Serial ID |
SI-01C2:MA-Q4 | Q20-081 |
SI-01C3:MA-Q4 | Q20-097 |
SI-02C2:MA-Q4 | Q20-051 |
SI-02C3:MA-Q4 | Q20-168 |
SI-03C2:MA-Q4 | Q20-166 |
SI-03C3:MA-Q4 | Q20-043 |
SI-04C2:MA-Q4 | Q20-080 |
SI-04C3:MA-Q4 | Q20-047 |
SI-05C2:MA-Q4 | Q20-163 |
SI-05C3:MA-Q4 | Q20-048 |
SI-06C2:MA-Q4 | Q20-103 |
SI-06C3:MA-Q4 | Q20-116 |
SI-07C2:MA-Q4 | Q20-089 |
SI-07C3:MA-Q4 | Q20-077 |
SI-08C2:MA-Q4 | Q20-093 |
SI-08C3:MA-Q4 | Q20-063 |
SI-09C2:MA-Q4 | Q20-100 |
SI-09C3:MA-Q4 | Q20-054 |
SI-10C2:MA-Q4 | Q20-156 |
SI-10C3:MA-Q4 | Q20-169 |
SI-11C2:MA-Q4 | Q20-057 |
SI-11C3:MA-Q4 | Q20-058 |
SI-12C2:MA-Q4 | Q20-090 |
SI-12C3:MA-Q4 | Q20-150 |
SI-13C2:MA-Q4 | Q20-144 |
SI-13C3:MA-Q4 | Q20-085 |
SI-14C2:MA-Q4 | Q20-052 |
SI-14C3:MA-Q4 | Q20-069 |
SI-15C2:MA-Q4 | Q20-123 |
SI-15C3:MA-Q4 | Q20-084 |
SI-16C2:MA-Q4 | Q20-143 |
SI-16C3:MA-Q4 | Q20-171 |
SI-17C2:MA-Q4 | Q20-053 |
SI-17C3:MA-Q4 | Q20-157 |
SI-18C2:MA-Q4 | Q20-078 |
SI-18C3:MA-Q4 | Q20-146 |
SI-19C2:MA-Q4 | Q20-060 |
SI-19C3:MA-Q4 | Q20-160 |
SI-20C2:MA-Q4 | Q20-173 |
SI-20C3:MA-Q4 | Q20-083 |
Not Used | |
Magnet Name | Magnet Serial ID |
--- | Q20-041 |
--- | Q20-088 |
--- | Q20-040 |
--- | Q20-055 |
--- | Q20-099 |
Q30 Installation Order
QFB | |
---|---|
Magnet Name | Magnet Serial ID |
SI-02M1:MA-QFB | Q30-016 |
SI-02M2:MA-QFB | Q30-032 |
SI-04M1:MA-QFB | Q30-010 |
SI-04M2:MA-QFB | Q30-019 |
SI-06M1:MA-QFB | Q30-008 |
SI-06M2:MA-QFB | Q30-036 |
SI-08M1:MA-QFB | Q30-011 |
SI-08M2:MA-QFB | Q30-035 |
SI-10M1:MA-QFB | Q30-009 |
SI-10M2:MA-QFB | Q30-020 |
SI-12M1:MA-QFB | Q30-029 |
SI-12M2:MA-QFB | Q30-014 |
SI-14M1:MA-QFB | Q30-013 |
SI-14M2:MA-QFB | Q30-024 |
SI-16M1:MA-QFB | Q30-005 |
SI-16M2:MA-QFB | Q30-021 |
SI-18M1:MA-QFB | Q30-025 |
SI-18M2:MA-QFB | Q30-030 |
SI-20M1:MA-QFB | Q30-023 |
SI-20M2:MA-QFB | Q30-022 |
QFP | |
Magnet Name | Magnet Serial ID |
SI-03M1:MA-QFP | Q30-033 |
SI-03M2:MA-QFP | Q30-027 |
SI-07M1:MA-QFP | Q30-017 |
SI-07M2:MA-QFP | Q30-006 |
SI-11M1:MA-QFP | Q30-026 |
SI-11M2:MA-QFP | Q30-034 |
SI-15M1:MA-QFP | Q30-015 |
SI-15M2:MA-QFP | Q30-031 |
SI-19M1:MA-QFP | Q30-007 |
SI-19M2:MA-QFP | Q30-004 |
Not Used | |
Magnet Name | Magnet Serial ID |
--- | Q30-018 |
--- | Q30-012 |
--- | Q30-028 |
Storage Ring Sextupoles, Slow Orbit Correctors and Skew Quadrupoles
Sextupole magnets in Sirius are designed to be multifunctional: apart from providing sextupolar field for chromaticity correction and dynamical aperture optimization, they also provide horizontal and vertical slow dipolar correctors for steering the beam orbit, as well as skew quadrupolar field to correct linear coupling introduced by lattice errors. These functions are implemented as additional excitations coils in the magnets. A sextupole magnet with excitation coils for vertical and/or horizontal dipolar fields does not have coils for skew quadrupolar fields, and vice-versa.
SI Sextupole Magnet Specifications
Main Parameters
Table 22 lists main specifications for the strength of the sextupole magnets.
Number of magnets | 280 | |
Magnetic length | 0.15 | m |
Bore diameter | 28 | mm |
Maximum sextupolar strength | 240 | m-3 |
Maximum integrated sextupolar strength, ∫S.ds | 36 | m-2 |
Maximum integrated sextupolar field gradient, ∫B"/2.ds | 360.2 | T·m-1 |
Maximum sextupole field gradient | 2402 | T·m-2 |
Maximum sextupolar field at pole tip | 0.47 | T |
Table 23 lists main specifications for the orbit-corrector in the sextupole magnets.
Coils | CH | CV | |
Number of correctors | 120 | 160 | |
Sextupole families with correctors | SDA0, SFB0, SFP0, SDx1, SFx2 | SDA0, SFB0, SFP0, SDx1, SDx3, SFx2(C3) | |
Maximum kick angle | 390 | 405 | μrad |
Maximum integrated dipolar field | 0.00390 | 0.00405 | T·m |
Maximum dipolar field | 0.0260 | 0.0270 | T |
Table 24 lists main specifications for the skew quadrupoles in the sextupole magnets.
Coil | QS | |
Number | 80 (+ 10 QS in fast corrector) | |
Sextupole families with skew quadrupoles | SFA0, SDB0, SDP0, SDx2(C1), SDx3(C3) | |
Maximum skew quadrupolar strength 1 | 0.0667 | m-2 |
Maximum integrated skew quadrupolar strength | 0.0100 | m-1 |
Maximum integrated skew quadrupolar gradient | 0.100 | T |
1 Maximum value needed to correct linear coupling introduced by magnet alignment errors. Coupling introduced by IDs will be corrected using local skew quadrupoles.
Electric parameters
S15 | units | |
Main coil current | 158.48 | A |
Main coil number of turns | 11.25 | |
Maximum CH coil current | 10.00 | A |
CH coil number of turns | 14 / 28 | |
Maximum CV coil current | 10.00 | A |
CV coil number of turns | 28 | |
QS coil current1 | 4.30 | A |
QS coil number of turns | 28 | |
Stored magnetic energy | 61.57 | J |
Magnet inductance | 4.90 | mH |
1 Value required to reach the specified skew quadrupolar strength.
Multipole Errors
Multipole errors from sextupolar excitation
Multipole error | Systematic (normal) |
Random | |
Normal | Skew | ||
B3/B2 (octupole) | 7.0×10-4 | 5.0×10-4 | |
B4/B2 (decapole) | -7.0×10-5 | 5.0×10-4 | 5.0×10-4 |
B5/B2 (12-pole) | 4.0×10-4 | 5.0×10-5 | |
B6/B2 (14-pole) | -1.4×10-4 | 2.0×10-4 | 5.0×10-5 |
B8/B2 (18-pole) | -2.4×10-3 | ||
B14/B2 (30-pole) | +1.4×10-3 |
1 These spec values have been updated in 2018-04-23 after rotating coil measurements. They have been validated by beam dynamics calculations.
Multipole errors from slow horizontal corrector excitation
Multipole error | Systematic (normal) |
Random | |
Normal | Skew | ||
B4/B0 (decapole) | +3.1×10-1 | ||
B6/B0 (14-pole) | +3.3×10-2 | ||
B8/B0 (18-pole) | -4.8×10-2 | ||
B10/B0 (22-pole) | +1.4×10-2 |
Multipole errors from slow vertical corrector excitation
Multipole error | Systematic (skew) |
Random | |
Normal | Skew | ||
B4/B0 (decapole) | -2.9×10-1 | ||
B6/B0 (14-pole) | -3.5×10-3 | ||
B8/B0 (18-pole) | +5.5×10-2 | ||
B10/B0 (22-pole) | -1.1×10-2 |
Multipole errors from skew quadrupole excitation
Multipole error | Systematic (skew) |
Random | |
Normal | Skew | ||
B3/B1 (octupole) | -5.8×10-1 | ||
B7/B1 (16-pole) | +2.7×10-3 | ||
B9/B1 (20-pole) | +8.0×10-3 | ||
B13/B1 (28-pole) | +2.4×10-3 |
Alignment and Excitation Errors
Sextupoles | ||
Transverse position, ![]() ![]() |
40 | μm |
Rotation around longitudinal axis | 0.30 | mrad |
Strength error (static or low frequency) | 0.05 | % |
SI Sextupole Magnet 3D Models
Fieldmap Analysis
A 3D model of multifunctional sextupole magnet has been analyzed and approved. Fieldmap analysis for each function has been performed with maximum excitation currents, when residual multipoles are expected to be worse. For the analysis of horizontal and vertical orbit corrector fields, as well as for the skew quadrupole corrector field, the sextupolar function was also excited in order to guarantee fast convergence of the magnetic solution.
Sextupolar function
The latest analyzed fieldmap can be accessed here. A summary of the analysis can be found in analysis.txt
at this folder.
Sextupolar+Horizontal functions
The latest analyzed fieldmap can be accessed here. A summary of the analysis can be found in analysis.txt
at this folder.
Sextupolar+Vertical functions
The latest analyzed fieldmap can be accessed here. A summary of the analysis can be found in analysis.txt
at this folder.
Sextupolar+Skew functions
The latest analyzed fieldmap can be accessed here. A summary of the analysis can be found in analysis.txt
at this folder.
Segmented Model
Currently the hard-edge approximation is being used to model sextupoles for beam dynamics calculations purposes.
Segment# | Length [m] | Deflection [deg.] | Field [T] | K [m-2] * | S [m-3] * |
01 | 0.0750 | 0.000 | -0.000e+00 | +0.000e+00 | +2.470e+02 |
* K=B'/(Bρ), S=B"/(2Bρ)
SI Sextupole Magnet Measurements
A summary of magnet field measurements of SI S15 sextupoles.
Summary
/-------------------------------------------------------------------------------------------\ | IntSext[(T/m)/A] | XCenter[um] | YCenter[um] | RollError[mrad] | | Avg ± Std MaxMin | Avg ± Std MaxMin | Avg ± Std MaxMin | Avg ± Std MaxMin | /------|---------------------------|-------------------|-------------------|-----------------------| | SDA0 | -2.2551 ± 0.00060 0.00166 | +11.2 ± 7.5 27.8 | +27.2 ± 6.3 21.0 | -0.022 ± 0.051 0.157 | | SFA0 | -2.2555 ± 0.00038 0.00128 | +15.3 ± 5.0 16.6 | +22.6 ± 4.1 12.5 | +0.173 ± 0.076 0.266 | | SDB0 | -2.2514 ± 0.00065 0.00226 | +14.5 ± 6.0 26.1 | +22.7 ± 4.6 18.3 | +0.165 ± 0.037 0.145 | | SFB0 | -2.2488 ± 0.00079 0.00302 | +20.3 ± 7.8 27.7 | +27.8 ± 4.9 24.9 | +0.059 ± 0.058 0.239 | | SDP0 | -2.2525 ± 0.00014 0.00046 | +12.1 ± 4.9 15.1 | +25.2 ± 4.6 13.7 | +0.074 ± 0.032 0.096 | | SFP0 | -2.2543 ± 0.00033 0.00120 | +16.1 ± 6.9 24.1 | +23.6 ± 5.6 17.9 | +0.160 ± 0.050 0.193 | | SDA1 | -2.2467 ± 0.00033 0.00111 | +10.2 ± 6.2 21.1 | +25.6 ± 4.8 14.9 | +0.175 ± 0.022 0.081 | | SFA1 | -2.2332 ± 0.00035 0.00126 | +11.9 ± 2.9 10.6 | +23.0 ± 4.3 13.8 | +0.116 ± 0.023 0.069 | | SDB1 | -2.2545 ± 0.00053 0.00181 | +11.3 ± 5.3 20.4 | +26.0 ± 4.3 14.4 | +0.021 ± 0.038 0.136 | | SFB1 | -2.2003 ± 0.00105 0.00449 | +18.6 ± 5.2 17.9 | +25.5 ± 3.6 14.2 | +0.008 ± 0.080 0.325 | | SDP1 | -2.2550 ± 0.00042 0.00125 | +13.7 ± 6.3 20.3 | +23.7 ± 5.5 17.0 | +0.276 ± 0.035 0.108 | | SFP1 | -2.2030 ± 0.00029 0.00102 | +12.6 ± 3.8 12.7 | +25.9 ± 3.5 13.4 | +0.051 ± 0.044 0.124 | | SDA2 | -2.2584 ± 0.00113 0.00301 | +11.6 ± 5.2 17.6 | +24.0 ± 3.9 12.2 | +0.091 ± 0.069 0.254 | | SFA2 | -2.2481 ± 0.00044 0.00137 | +9.7 ± 6.5 23.5 | +25.1 ± 3.5 11.8 | +0.068 ± 0.027 0.090 | | SDB2 | -2.2532 ± 0.00100 0.00498 | +13.4 ± 5.4 25.0 | +24.4 ± 4.1 17.1 | +0.235 ± 0.110 0.544 | | SFB2 | -2.2324 ± 0.00079 0.00306 | +15.5 ± 7.1 25.8 | +27.8 ± 3.9 14.4 | -0.081 ± 0.066 0.268 | | SDP2 | -2.2523 ± 0.00032 0.00115 | +19.7 ± 6.1 16.8 | +28.2 ± 4.3 16.2 | +0.086 ± 0.042 0.132 | | SFP2 | -2.2306 ± 0.00048 0.00169 | +14.0 ± 4.4 14.6 | +25.8 ± 2.8 7.8 | -0.011 ± 0.030 0.100 | | SDA3 | -2.2494 ± 0.00064 0.00202 | +16.3 ± 2.9 9.1 | +25.2 ± 3.1 10.3 | +0.233 ± 0.059 0.217 | | SDB3 | -2.2446 ± 0.00060 0.00199 | +14.6 ± 6.4 23.1 | +24.7 ± 4.1 15.0 | +0.220 ± 0.052 0.231 | | SDP3 | -2.2484 ± 0.00038 0.00134 | +11.3 ± 5.2 18.0 | +22.0 ± 2.8 11.2 | +0.215 ± 0.034 0.094 | \--------------------------------------------------------------------------------------------------/
Integrated Sextupole
Horizontal Magnetic Center
Vertical Magnetic Center
Roll-Angle Error
SI Sextupole Magnet Sorting
SDA0 | |
---|---|
Magnet Name | Magnet Serial ID |
SI-01M2:MA-SDA0 | S15-004 |
SI-05M1:MA-SDA0 | S15-007 |
SI-05M2:MA-SDA0 | S15-270 |
SI-09M1:MA-SDA0 | S15-240 |
SI-09M2:MA-SDA0 | S15-283 |
SI-13M1:MA-SDA0 | S15-122 |
SI-13M2:MA-SDA0 | S15-184 |
SI-17M1:MA-SDA0 | S15-273 |
SI-17M2:MA-SDA0 | S15-118 |
SI-01M1:MA-SDA0 | S15-261 |
SFA0 | |
Magnet Name | Magnet Serial ID |
SI-01M2:MA-SFA0 | S15-278 |
SI-05M1:MA-SFA0 | S15-246 |
SI-05M2:MA-SFA0 | S15-276 |
SI-09M1:MA-SFA0 | S15-009 |
SI-09M2:MA-SFA0 | S15-015 |
SI-13M1:MA-SFA0 | S15-279 |
SI-13M2:MA-SFA0 | S15-033 |
SI-17M1:MA-SFA0 | S15-016 |
SI-17M2:MA-SFA0 | S15-010 |
SI-01M1:MA-SFA0 | S15-172 |
SDB0 | |
Magnet Name | Magnet Serial ID |
SI-02M1:MA-SDB0 | S15-159 |
SI-02M2:MA-SDB0 | S15-119 |
SI-04M1:MA-SDB0 | S15-132 |
SI-04M2:MA-SDB0 | S15-101 |
SI-06M1:MA-SDB0 | S15-026 |
SI-06M2:MA-SDB0 | S15-085 |
SI-08M1:MA-SDB0 | S15-259 |
SI-08M2:MA-SDB0 | S15-264 |
SI-10M1:MA-SDB0 | S15-154 |
SI-10M2:MA-SDB0 | S15-131 |
SI-12M1:MA-SDB0 | S15-241 |
SI-12M2:MA-SDB0 | S15-108 |
SI-14M1:MA-SDB0 | S15-086 |
SI-14M2:MA-SDB0 | S15-114 |
SI-16M1:MA-SDB0 | S15-213 |
SI-16M2:MA-SDB0 | S15-106 |
SI-18M1:MA-SDB0 | S15-157 |
SI-18M2:MA-SDB0 | S15-023 |
SI-20M1:MA-SDB0 | S15-045 |
SI-20M2:MA-SDB0 | S15-239 |
SFB0 | |
Magnet Name | Magnet Serial ID |
SI-02M1:MA-SFB0 | S15-076 |
SI-02M2:MA-SFB0 | S15-133 |
SI-04M1:MA-SFB0 | S15-152 |
SI-04M2:MA-SFB0 | S15-082 |
SI-06M1:MA-SFB0 | S15-074 |
SI-06M2:MA-SFB0 | S15-163 |
SI-08M1:MA-SFB0 | S15-103 |
SI-08M2:MA-SFB0 | S15-075 |
SI-10M1:MA-SFB0 | S15-072 |
SI-10M2:MA-SFB0 | S15-208 |
SI-12M1:MA-SFB0 | S15-039 |
SI-12M2:MA-SFB0 | S15-048 |
SI-14M1:MA-SFB0 | S15-070 |
SI-14M2:MA-SFB0 | S15-053 |
SI-16M1:MA-SFB0 | S15-038 |
SI-16M2:MA-SFB0 | S15-151 |
SI-18M1:MA-SFB0 | S15-077 |
SI-18M2:MA-SFB0 | S15-013 |
SI-20M1:MA-SFB0 | S15-056 |
SI-20M2:MA-SFB0 | S15-073 |
SDP0 | |
Magnet Name | Magnet Serial ID |
SI-03M1:MA-SDP0 | S15-041 |
SI-03M2:MA-SDP0 | S15-110 |
SI-07M1:MA-SDP0 | S15-113 |
SI-07M2:MA-SDP0 | S15-269 |
SI-11M1:MA-SDP0 | S15-230 |
SI-11M2:MA-SDP0 | S15-147 |
SI-15M1:MA-SDP0 | S15-143 |
SI-15M2:MA-SDP0 | S15-193 |
SI-19M1:MA-SDP0 | S15-232 |
SI-19M2:MA-SDP0 | S15-187 |
SFP0 | |
Magnet Name | Magnet Serial ID |
SI-03M1:MA-SFP0 | S15-249 |
SI-03M2:MA-SFP0 | S15-221 |
SI-07M1:MA-SFP0 | S15-238 |
SI-07M2:MA-SFP0 | S15-044 |
SI-11M1:MA-SFP0 | S15-274 |
SI-11M2:MA-SFP0 | S15-135 |
SI-15M1:MA-SFP0 | S15-043 |
SI-15M2:MA-SFP0 | S15-040 |
SI-19M1:MA-SFP0 | S15-258 |
SI-19M2:MA-SFP0 | S15-093 |
SDA1 | |
Magnet Name | Magnet Serial ID |
SI-01C1:MA-SDA1 | S15-138 |
SI-04C4:MA-SDA1 | S15-120 |
SI-05C1:MA-SDA1 | S15-195 |
SI-08C4:MA-SDA1 | S15-212 |
SI-09C1:MA-SDA1 | S15-207 |
SI-12C4:MA-SDA1 | S15-164 |
SI-13C1:MA-SDA1 | S15-100 |
SI-16C4:MA-SDA1 | S15-141 |
SI-17C1:MA-SDA1 | S15-223 |
SI-20C4:MA-SDA1 | S15-112 |
SFA1 | |
Magnet Name | Magnet Serial ID |
SI-01C1:MA-SFA1 | S15-142 |
SI-04C4:MA-SFA1 | S15-219 |
SI-05C1:MA-SFA1 | S15-102 |
SI-08C4:MA-SFA1 | S15-286 |
SI-09C1:MA-SFA1 | S15-236 |
SI-12C4:MA-SFA1 | S15-266 |
SI-13C1:MA-SFA1 | S15-265 |
SI-16C4:MA-SFA1 | S15-272 |
SI-17C1:MA-SFA1 | S15-098 |
SI-20C4:MA-SFA1 | S15-105 |
SDB1 | |
Magnet Name | Magnet Serial ID |
SI-01C4:MA-SDB1 | S15-168 |
SI-02C1:MA-SDB1 | S15-181 |
SI-03C4:MA-SDB1 | S15-174 |
SI-04C1:MA-SDB1 | S15-128 |
SI-05C4:MA-SDB1 | S15-146 |
SI-06C1:MA-SDB1 | S15-268 |
SI-07C4:MA-SDB1 | S15-139 |
SI-08C1:MA-SDB1 | S15-202 |
SI-09C4:MA-SDB1 | S15-244 |
SI-10C1:MA-SDB1 | S15-242 |
SI-11C4:MA-SDB1 | S15-149 |
SI-12C1:MA-SDB1 | S15-124 |
SI-13C4:MA-SDB1 | S15-107 |
SI-14C1:MA-SDB1 | S15-189 |
SI-15C4:MA-SDB1 | S15-188 |
SI-16C1:MA-SDB1 | S15-177 |
SI-17C4:MA-SDB1 | S15-186 |
SI-18C1:MA-SDB1 | S15-126 |
SI-19C4:MA-SDB1 | S15-123 |
SI-20C1:MA-SDB1 | S15-170 |
SFB1 | |
Magnet Name | Magnet Serial ID |
SI-01C4:MA-SFB1 | S15-104 |
SI-02C1:MA-SFB1 | S15-080 |
SI-03C4:MA-SFB1 | S15-061 |
SI-04C1:MA-SFB1 | S15-067 |
SI-05C4:MA-SFB1 | S15-068 |
SI-06C1:MA-SFB1 | S15-034 |
SI-07C4:MA-SFB1 | S15-060 |
SI-08C1:MA-SFB1 | S15-081 |
SI-09C4:MA-SFB1 | S15-156 |
SI-10C1:MA-SFB1 | S15-257 |
SI-11C4:MA-SFB1 | S15-234 |
SI-12C1:MA-SFB1 | S15-182 |
SI-13C4:MA-SFB1 | S15-233 |
SI-14C1:MA-SFB1 | S15-169 |
SI-15C4:MA-SFB1 | S15-059 |
SI-16C1:MA-SFB1 | S15-275 |
SI-17C4:MA-SFB1 | S15-153 |
SI-18C1:MA-SFB1 | S15-052 |
SI-19C4:MA-SFB1 | S15-071 |
SI-20C1:MA-SFB1 | S15-065 |
SDP1 | |
Magnet Name | Magnet Serial ID |
SI-02C4:MA-SDP1 | S15-092 |
SI-03C1:MA-SDP1 | S15-017 |
SI-06C4:MA-SDP1 | S15-175 |
SI-07C1:MA-SDP1 | S15-271 |
SI-10C4:MA-SDP1 | S15-020 |
SI-11C1:MA-SDP1 | S15-050 |
SI-14C4:MA-SDP1 | S15-109 |
SI-15C1:MA-SDP1 | S15-012 |
SI-18C4:MA-SDP1 | S15-155 |
SI-19C1:MA-SDP1 | S15-227 |
SFP1 | |
Magnet Name | Magnet Serial ID |
SI-02C4:MA-SFP1 | S15-063 |
SI-03C1:MA-SFP1 | S15-260 |
SI-06C4:MA-SFP1 | S15-180 |
SI-07C1:MA-SFP1 | S15-176 |
SI-10C4:MA-SFP1 | S15-250 |
SI-11C1:MA-SFP1 | S15-209 |
SI-14C4:MA-SFP1 | S15-165 |
SI-15C1:MA-SFP1 | S15-253 |
SI-18C4:MA-SFP1 | S15-229 |
SI-19C1:MA-SFP1 | S15-251 |
SDA2 | |
Magnet Name | Magnet Serial ID |
SI-01C1:MA-SDA2 | S15-248 |
SI-04C4:MA-SDA2 | S15-277 |
SI-05C1:MA-SDA2 | S15-245 |
SI-08C4:MA-SDA2 | S15-029 |
SI-09C1:MA-SDA2 | S15-256 |
SI-12C4:MA-SDA2 | S15-167 |
SI-13C1:MA-SDA2 | S15-031 |
SI-16C4:MA-SDA2 | S15-263 |
SI-17C1:MA-SDA2 | S15-166 |
SI-20C4:MA-SDA2 | S15-032 |
SFA2 | |
Magnet Name | Magnet Serial ID |
SI-01C2:MA-SFA2 | S15-282 |
SI-04C3:MA-SFA2 | S15-117 |
SI-05C2:MA-SFA2 | S15-021 |
SI-08C3:MA-SFA2 | S15-145 |
SI-09C2:MA-SFA2 | S15-220 |
SI-12C3:MA-SFA2 | S15-243 |
SI-13C2:MA-SFA2 | S15-171 |
SI-16C3:MA-SFA2 | S15-280 |
SI-17C2:MA-SFA2 | S15-281 |
SI-20C3:MA-SFA2 | S15-005 |
SDB2 | |
Magnet Name | Magnet Serial ID |
SI-01C4:MA-SDB2 | S15-197 |
SI-02C1:MA-SDB2 | S15-247 |
SI-03C4:MA-SDB2 | S15-218 |
SI-04C1:MA-SDB2 | S15-099 |
SI-05C4:MA-SDB2 | S15-211 |
SI-06C1:MA-SDB2 | S15-006 |
SI-07C4:MA-SDB2 | S15-235 |
SI-08C1:MA-SDB2 | S15-130 |
SI-09C4:MA-SDB2 | S15-226 |
SI-10C1:MA-SDB2 | S15-254 |
SI-11C4:MA-SDB2 | S15-162 |
SI-12C1:MA-SDB2 | S15-206 |
SI-13C4:MA-SDB2 | S15-096 |
SI-14C1:MA-SDB2 | S15-224 |
SI-15C4:MA-SDB2 | S15-140 |
SI-16C1:MA-SDB2 | S15-225 |
SI-17C4:MA-SDB2 | S15-129 |
SI-18C1:MA-SDB2 | S15-027 |
SI-19C4:MA-SDB2 | S15-222 |
SI-20C1:MA-SDB2 | S15-203 |
SFB2 | |
Magnet Name | Magnet Serial ID |
SI-01C3:MA-SFB2 | S15-121 |
SI-02C2:MA-SFB2 | S15-190 |
SI-03C3:MA-SFB2 | S15-192 |
SI-04C2:MA-SFB2 | S15-087 |
SI-05C3:MA-SFB2 | S15-210 |
SI-06C2:MA-SFB2 | S15-231 |
SI-07C3:MA-SFB2 | S15-158 |
SI-08C2:MA-SFB2 | S15-115 |
SI-09C3:MA-SFB2 | S15-008 |
SI-10C2:MA-SFB2 | S15-160 |
SI-11C3:MA-SFB2 | S15-019 |
SI-12C2:MA-SFB2 | S15-267 |
SI-13C3:MA-SFB2 | S15-078 |
SI-14C2:MA-SFB2 | S15-030 |
SI-15C3:MA-SFB2 | S15-090 |
SI-16C2:MA-SFB2 | S15-116 |
SI-17C3:MA-SFB2 | S15-018 |
SI-18C2:MA-SFB2 | S15-097 |
SI-19C3:MA-SFB2 | S15-179 |
SI-20C2:MA-SFB2 | S15-185 |
SDP2 | |
Magnet Name | Magnet Serial ID |
SI-02C4:MA-SDP2 | S15-252 |
SI-03C1:MA-SDP2 | S15-199 |
SI-06C4:MA-SDP2 | S15-088 |
SI-07C1:MA-SDP2 | S15-024 |
SI-10C4:MA-SDP2 | S15-079 |
SI-11C1:MA-SDP2 | S15-191 |
SI-14C4:MA-SDP2 | S15-025 |
SI-15C1:MA-SDP2 | S15-014 |
SI-18C4:MA-SDP2 | S15-161 |
SI-19C1:MA-SDP2 | S15-028 |
SFP2 | |
Magnet Name | Magnet Serial ID |
SI-02C3:MA-SFP2 | S15-062 |
SI-03C2:MA-SFP2 | S15-049 |
SI-06C3:MA-SFP2 | S15-194 |
SI-07C2:MA-SFP2 | S15-064 |
SI-10C3:MA-SFP2 | S15-237 |
SI-11C2:MA-SFP2 | S15-127 |
SI-14C3:MA-SFP2 | S15-057 |
SI-15C2:MA-SFP2 | S15-173 |
SI-18C3:MA-SFP2 | S15-089 |
SI-19C2:MA-SFP2 | S15-054 |
SDA3 | |
Magnet Name | Magnet Serial ID |
SI-01C2:MA-SDA3 | S15-217 |
SI-04C3:MA-SDA3 | S15-215 |
SI-05C2:MA-SDA3 | S15-035 |
SI-08C3:MA-SDA3 | S15-144 |
SI-09C2:MA-SDA3 | S15-216 |
SI-12C3:MA-SDA3 | S15-214 |
SI-13C2:MA-SDA3 | S15-204 |
SI-16C3:MA-SDA3 | S15-036 |
SI-17C2:MA-SDA3 | S15-051 |
SI-20C3:MA-SDA3 | S15-022 |
SDB3 | |
Magnet Name | Magnet Serial ID |
SI-01C3:MA-SDB3 | S15-084 |
SI-02C2:MA-SDB3 | S15-111 |
SI-03C3:MA-SDB3 | S15-228 |
SI-04C2:MA-SDB3 | S15-150 |
SI-05C3:MA-SDB3 | S15-198 |
SI-06C2:MA-SDB3 | S15-201 |
SI-07C3:MA-SDB3 | S15-196 |
SI-08C2:MA-SDB3 | S15-125 |
SI-09C3:MA-SDB3 | S15-183 |
SI-10C2:MA-SDB3 | S15-205 |
SI-11C3:MA-SDB3 | S15-047 |
SI-12C2:MA-SDB3 | S15-200 |
SI-13C3:MA-SDB3 | S15-037 |
SI-14C2:MA-SDB3 | S15-148 |
SI-15C3:MA-SDB3 | S15-058 |
SI-16C2:MA-SDB3 | S15-178 |
SI-17C3:MA-SDB3 | S15-255 |
SI-18C2:MA-SDB3 | S15-134 |
SI-19C3:MA-SDB3 | S15-083 |
SI-20C2:MA-SDB3 | S15-046 |
SDP3 | |
Magnet Name | Magnet Serial ID |
SI-02C3:MA-SDP3 | S15-042 |
SI-03C2:MA-SDP3 | S15-095 |
SI-06C3:MA-SDP3 | S15-055 |
SI-07C2:MA-SDP3 | S15-094 |
SI-10C3:MA-SDP3 | S15-011 |
SI-11C2:MA-SDP3 | S15-262 |
SI-14C3:MA-SDP3 | S15-136 |
SI-15C2:MA-SDP3 | S15-284 |
SI-18C3:MA-SDP3 | S15-137 |
SI-19C2:MA-SDP3 | S15-285 |
Not Used | |
Magnet Name | Magnet Serial ID |
--- | S15-091 |
Storage Ring Vertical Corrector Magnets
Apart from slow horizontal and vertical slow orbit correctors implemented as additional coils in sextupole magnets, there will be 20 vertical corrector magnets located in C2 dispersion sections. These magnets will be identical to the ones used in the Booster.
Storage Ring Fast Orbit Correctors
Sirius storage ring is planned to have 80 horizontal and 80 vertical fast orbit correctors, as well as 10 skew quadrupole correctors. There will be two types of fast correctors: FC1 magnets with iron poles resembling skew quadrupoles, where horizontal, vertical and skew correctors are implemented as independent coils, and FC2 magnets, which are CF1 magnets rotated 45 degrees with no skew corrector coils. FC2 magnets are installed in odd-numbered C2 sectors to allow for synchrotron light of B2 dipoles to go to diagnostics beamlines. Fast correctors will sit on top of stainless steel vacuum chambers coated with a thin copper inner layer.
SI Fast Correctors Specifications
Main Parameters
Horizontal | Vertical | Skew | |
Number of fast correctors | 80 | 80 | 10 1 |
Maximum fast corrector strength | 30 μrad | 30 μrad | 0.1 T 2 |
1 located at even C2 sectors.
2 based on a 2.6%(2.3%) coupling value when one skew magnet is turned on in a straight high(low)-beta straight section.
Multipole Errors
The impact on the beam dynamics of residual multipole errors for the fast corrector magnets has been analyzed from fieldmaps of current models. The impact is very small and the current magnet models have been accepted. Magnetic measurements for prototypes are yet to be taken and analyzed.
SI Fast Correctors Magnet 3D Models
Fieldmap Analysis
A 3D model of multifunctional sextupole magnet has been analyzed and approved. Fieldmap analysis for each function has been performed with maximum excitation currents, when residual multipoles are expected to be worse. For the analysis of horizontal and vertical orbit corrector fields, as well as for the skew quadrupole corrector field, the sextupolar function was also excited in order to guarantee fast convergence of the magnetic solution.
FC1 Horizontal correction function
A summary of the analysis can be found in analysis.txt
at this folder.
FC1 Vertical correction function
A summary of the analysis can be found in analysis.txt
at this folder.
FC1 Skew quadrupole function
A summary of the analysis can be found in analysis.txt
at this folder.
FC2 Horizontal correction function
A summary of the analysis can be found in analysis.txt
at this folder.
FC2 Vertical correction function
A summary of the analysis can be found in analysis.txt
at this folder.
Segmented Model
A hardedge model is being used for fast correctors.
SI Fast Correctors Magnet Measurements
Not available yet.
Storage Ring Magnet Families
The storage ring magnets are grouped into families. The tables below list the storage ring families with their individual magnets.
Storage Ring Dipole Families
SI-Fam:PS-B1B2-1 | SI-Fam:PS-B1B2-2 | SI-Fam:MA-QB1B2 | |
---|---|---|---|
1 | SI-01C1:MA-B1 | SI-01C1:MA-B1 | SI-01C1:MA-B1 |
2 | SI-01C2:MA-B2 | SI-01C2:MA-B2 | SI-01C2:MA-B2 |
3 | SI-01C3:MA-B2 | SI-01C3:MA-B2 | SI-01C3:MA-B2 |
4 | SI-01C4:MA-B1 | SI-01C4:MA-B1 | SI-01C4:MA-B1 |
5 | SI-02C1:MA-B1 | SI-02C1:MA-B1 | SI-02C1:MA-B1 |
6 | SI-02C2:MA-B2 | SI-02C2:MA-B2 | SI-02C2:MA-B2 |
7 | SI-02C3:MA-B2 | SI-02C3:MA-B2 | SI-02C3:MA-B2 |
8 | SI-02C4:MA-B1 | SI-02C4:MA-B1 | SI-02C4:MA-B1 |
9 | SI-03C1:MA-B1 | SI-03C1:MA-B1 | SI-03C1:MA-B1 |
10 | SI-03C2:MA-B2 | SI-03C2:MA-B2 | SI-03C2:MA-B2 |
11 | SI-03C3:MA-B2 | SI-03C3:MA-B2 | SI-03C3:MA-B2 |
12 | SI-03C4:MA-B1 | SI-03C4:MA-B1 | SI-03C4:MA-B1 |
13 | SI-04C1:MA-B1 | SI-04C1:MA-B1 | SI-04C1:MA-B1 |
14 | SI-04C2:MA-B2 | SI-04C2:MA-B2 | SI-04C2:MA-B2 |
15 | SI-04C3:MA-B2 | SI-04C3:MA-B2 | SI-04C3:MA-B2 |
16 | SI-04C4:MA-B1 | SI-04C4:MA-B1 | SI-04C4:MA-B1 |
17 | SI-05C1:MA-B1 | SI-05C1:MA-B1 | SI-05C1:MA-B1 |
18 | SI-05C2:MA-B2 | SI-05C2:MA-B2 | SI-05C2:MA-B2 |
19 | SI-05C3:MA-B2 | SI-05C3:MA-B2 | SI-05C3:MA-B2 |
20 | SI-05C4:MA-B1 | SI-05C4:MA-B1 | SI-05C4:MA-B1 |
21 | SI-06C1:MA-B1 | SI-06C1:MA-B1 | SI-06C1:MA-B1 |
22 | SI-06C2:MA-B2 | SI-06C2:MA-B2 | SI-06C2:MA-B2 |
23 | SI-06C3:MA-B2 | SI-06C3:MA-B2 | SI-06C3:MA-B2 |
24 | SI-06C4:MA-B1 | SI-06C4:MA-B1 | SI-06C4:MA-B1 |
25 | SI-07C1:MA-B1 | SI-07C1:MA-B1 | SI-07C1:MA-B1 |
26 | SI-07C2:MA-B2 | SI-07C2:MA-B2 | SI-07C2:MA-B2 |
27 | SI-07C3:MA-B2 | SI-07C3:MA-B2 | SI-07C3:MA-B2 |
28 | SI-07C4:MA-B1 | SI-07C4:MA-B1 | SI-07C4:MA-B1 |
29 | SI-08C1:MA-B1 | SI-08C1:MA-B1 | SI-08C1:MA-B1 |
30 | SI-08C2:MA-B2 | SI-08C2:MA-B2 | SI-08C2:MA-B2 |
31 | SI-08C3:MA-B2 | SI-08C3:MA-B2 | SI-08C3:MA-B2 |
32 | SI-08C4:MA-B1 | SI-08C4:MA-B1 | SI-08C4:MA-B1 |
33 | SI-09C1:MA-B1 | SI-09C1:MA-B1 | SI-09C1:MA-B1 |
34 | SI-09C2:MA-B2 | SI-09C2:MA-B2 | SI-09C2:MA-B2 |
35 | SI-09C3:MA-B2 | SI-09C3:MA-B2 | SI-09C3:MA-B2 |
36 | SI-09C4:MA-B1 | SI-09C4:MA-B1 | SI-09C4:MA-B1 |
37 | SI-10C1:MA-B1 | SI-10C1:MA-B1 | SI-10C1:MA-B1 |
38 | SI-10C2:MA-B2 | SI-10C2:MA-B2 | SI-10C2:MA-B2 |
39 | SI-10C3:MA-B2 | SI-10C3:MA-B2 | SI-10C3:MA-B2 |
40 | SI-10C4:MA-B1 | SI-10C4:MA-B1 | SI-10C4:MA-B1 |
41 | SI-11C1:MA-B1 | SI-11C1:MA-B1 | SI-11C1:MA-B1 |
42 | SI-11C2:MA-B2 | SI-11C2:MA-B2 | SI-11C2:MA-B2 |
43 | SI-11C3:MA-B2 | SI-11C3:MA-B2 | SI-11C3:MA-B2 |
44 | SI-11C4:MA-B1 | SI-11C4:MA-B1 | SI-11C4:MA-B1 |
45 | SI-12C1:MA-B1 | SI-12C1:MA-B1 | SI-12C1:MA-B1 |
46 | SI-12C2:MA-B2 | SI-12C2:MA-B2 | SI-12C2:MA-B2 |
47 | SI-12C3:MA-B2 | SI-12C3:MA-B2 | SI-12C3:MA-B2 |
48 | SI-12C4:MA-B1 | SI-12C4:MA-B1 | SI-12C4:MA-B1 |
49 | SI-13C1:MA-B1 | SI-13C1:MA-B1 | SI-13C1:MA-B1 |
50 | SI-13C2:MA-B2 | SI-13C2:MA-B2 | SI-13C2:MA-B2 |
51 | SI-13C3:MA-B2 | SI-13C3:MA-B2 | SI-13C3:MA-B2 |
52 | SI-13C4:MA-B1 | SI-13C4:MA-B1 | SI-13C4:MA-B1 |
53 | SI-14C1:MA-B1 | SI-14C1:MA-B1 | SI-14C1:MA-B1 |
54 | SI-14C2:MA-B2 | SI-14C2:MA-B2 | SI-14C2:MA-B2 |
55 | SI-14C3:MA-B2 | SI-14C3:MA-B2 | SI-14C3:MA-B2 |
56 | SI-14C4:MA-B1 | SI-14C4:MA-B1 | SI-14C4:MA-B1 |
57 | SI-15C1:MA-B1 | SI-15C1:MA-B1 | SI-15C1:MA-B1 |
58 | SI-15C2:MA-B2 | SI-15C2:MA-B2 | SI-15C2:MA-B2 |
59 | SI-15C3:MA-B2 | SI-15C3:MA-B2 | SI-15C3:MA-B2 |
60 | SI-15C4:MA-B1 | SI-15C4:MA-B1 | SI-15C4:MA-B1 |
61 | SI-16C1:MA-B1 | SI-16C1:MA-B1 | SI-16C1:MA-B1 |
62 | SI-16C2:MA-B2 | SI-16C2:MA-B2 | SI-16C2:MA-B2 |
63 | SI-16C3:MA-B2 | SI-16C3:MA-B2 | SI-16C3:MA-B2 |
64 | SI-16C4:MA-B1 | SI-16C4:MA-B1 | SI-16C4:MA-B1 |
65 | SI-17C1:MA-B1 | SI-17C1:MA-B1 | SI-17C1:MA-B1 |
66 | SI-17C2:MA-B2 | SI-17C2:MA-B2 | SI-17C2:MA-B2 |
67 | SI-17C3:MA-B2 | SI-17C3:MA-B2 | SI-17C3:MA-B2 |
68 | SI-17C4:MA-B1 | SI-17C4:MA-B1 | SI-17C4:MA-B1 |
69 | SI-18C1:MA-B1 | SI-18C1:MA-B1 | SI-18C1:MA-B1 |
70 | SI-18C2:MA-B2 | SI-18C2:MA-B2 | SI-18C2:MA-B2 |
71 | SI-18C3:MA-B2 | SI-18C3:MA-B2 | SI-18C3:MA-B2 |
72 | SI-18C4:MA-B1 | SI-18C4:MA-B1 | SI-18C4:MA-B1 |
73 | SI-19C1:MA-B1 | SI-19C1:MA-B1 | SI-19C1:MA-B1 |
74 | SI-19C2:MA-B2 | SI-19C2:MA-B2 | SI-19C2:MA-B2 |
75 | SI-19C3:MA-B2 | SI-19C3:MA-B2 | SI-19C3:MA-B2 |
76 | SI-19C4:MA-B1 | SI-19C4:MA-B1 | SI-19C4:MA-B1 |
77 | SI-20C1:MA-B1 | SI-20C1:MA-B1 | SI-20C1:MA-B1 |
78 | SI-20C2:MA-B2 | SI-20C2:MA-B2 | SI-20C2:MA-B2 |
79 | SI-20C3:MA-B2 | SI-20C3:MA-B2 | SI-20C3:MA-B2 |
80 | SI-20C4:MA-B1 | SI-20C4:MA-B1 | SI-20C4:MA-B1 |
Storage Ring Quadrupole Families
SI-Fam:MA-Q1 | SI-Fam:MA-Q2 | SI-Fam:MA-Q3 | SI-Fam:MA-Q4 | |
---|---|---|---|---|
1 | SI-01C1:MA-Q1 | SI-01C1:MA-Q2 | SI-01C2:MA-Q3 | SI-01C2:MA-Q4 |
2 | SI-01C4:MA-Q1 | SI-01C4:MA-Q2 | SI-01C3:MA-Q3 | SI-01C3:MA-Q4 |
3 | SI-02C1:MA-Q1 | SI-02C1:MA-Q2 | SI-02C2:MA-Q3 | SI-02C2:MA-Q4 |
4 | SI-02C4:MA-Q1 | SI-02C4:MA-Q2 | SI-02C3:MA-Q3 | SI-02C3:MA-Q4 |
5 | SI-03C1:MA-Q1 | SI-03C1:MA-Q2 | SI-03C2:MA-Q3 | SI-03C2:MA-Q4 |
6 | SI-03C4:MA-Q1 | SI-03C4:MA-Q2 | SI-03C3:MA-Q3 | SI-03C3:MA-Q4 |
7 | SI-04C1:MA-Q1 | SI-04C1:MA-Q2 | SI-04C2:MA-Q3 | SI-04C2:MA-Q4 |
8 | SI-04C4:MA-Q1 | SI-04C4:MA-Q2 | SI-04C3:MA-Q3 | SI-04C3:MA-Q4 |
9 | SI-05C1:MA-Q1 | SI-05C1:MA-Q2 | SI-05C2:MA-Q3 | SI-05C2:MA-Q4 |
10 | SI-05C4:MA-Q1 | SI-05C4:MA-Q2 | SI-05C3:MA-Q3 | SI-05C3:MA-Q4 |
11 | SI-06C1:MA-Q1 | SI-06C1:MA-Q2 | SI-06C2:MA-Q3 | SI-06C2:MA-Q4 |
12 | SI-06C4:MA-Q1 | SI-06C4:MA-Q2 | SI-06C3:MA-Q3 | SI-06C3:MA-Q4 |
13 | SI-07C1:MA-Q1 | SI-07C1:MA-Q2 | SI-07C2:MA-Q3 | SI-07C2:MA-Q4 |
14 | SI-07C4:MA-Q1 | SI-07C4:MA-Q2 | SI-07C3:MA-Q3 | SI-07C3:MA-Q4 |
15 | SI-08C1:MA-Q1 | SI-08C1:MA-Q2 | SI-08C2:MA-Q3 | SI-08C2:MA-Q4 |
16 | SI-08C4:MA-Q1 | SI-08C4:MA-Q2 | SI-08C3:MA-Q3 | SI-08C3:MA-Q4 |
17 | SI-09C1:MA-Q1 | SI-09C1:MA-Q2 | SI-09C2:MA-Q3 | SI-09C2:MA-Q4 |
18 | SI-09C4:MA-Q1 | SI-09C4:MA-Q2 | SI-09C3:MA-Q3 | SI-09C3:MA-Q4 |
19 | SI-10C1:MA-Q1 | SI-10C1:MA-Q2 | SI-10C2:MA-Q3 | SI-10C2:MA-Q4 |
20 | SI-10C4:MA-Q1 | SI-10C4:MA-Q2 | SI-10C3:MA-Q3 | SI-10C3:MA-Q4 |
21 | SI-11C1:MA-Q1 | SI-11C1:MA-Q2 | SI-11C2:MA-Q3 | SI-11C2:MA-Q4 |
22 | SI-11C4:MA-Q1 | SI-11C4:MA-Q2 | SI-11C3:MA-Q3 | SI-11C3:MA-Q4 |
23 | SI-12C1:MA-Q1 | SI-12C1:MA-Q2 | SI-12C2:MA-Q3 | SI-12C2:MA-Q4 |
24 | SI-12C4:MA-Q1 | SI-12C4:MA-Q2 | SI-12C3:MA-Q3 | SI-12C3:MA-Q4 |
25 | SI-13C1:MA-Q1 | SI-13C1:MA-Q2 | SI-13C2:MA-Q3 | SI-13C2:MA-Q4 |
26 | SI-13C4:MA-Q1 | SI-13C4:MA-Q2 | SI-13C3:MA-Q3 | SI-13C3:MA-Q4 |
27 | SI-14C1:MA-Q1 | SI-14C1:MA-Q2 | SI-14C2:MA-Q3 | SI-14C2:MA-Q4 |
28 | SI-14C4:MA-Q1 | SI-14C4:MA-Q2 | SI-14C3:MA-Q3 | SI-14C3:MA-Q4 |
29 | SI-15C1:MA-Q1 | SI-15C1:MA-Q2 | SI-15C2:MA-Q3 | SI-15C2:MA-Q4 |
30 | SI-15C4:MA-Q1 | SI-15C4:MA-Q2 | SI-15C3:MA-Q3 | SI-15C3:MA-Q4 |
31 | SI-16C1:MA-Q1 | SI-16C1:MA-Q2 | SI-16C2:MA-Q3 | SI-16C2:MA-Q4 |
32 | SI-16C4:MA-Q1 | SI-16C4:MA-Q2 | SI-16C3:MA-Q3 | SI-16C3:MA-Q4 |
33 | SI-17C1:MA-Q1 | SI-17C1:MA-Q2 | SI-17C2:MA-Q3 | SI-17C2:MA-Q4 |
34 | SI-17C4:MA-Q1 | SI-17C4:MA-Q2 | SI-17C3:MA-Q3 | SI-17C3:MA-Q4 |
35 | SI-18C1:MA-Q1 | SI-18C1:MA-Q2 | SI-18C2:MA-Q3 | SI-18C2:MA-Q4 |
36 | SI-18C4:MA-Q1 | SI-18C4:MA-Q2 | SI-18C3:MA-Q3 | SI-18C3:MA-Q4 |
37 | SI-19C1:MA-Q1 | SI-19C1:MA-Q2 | SI-19C2:MA-Q3 | SI-19C2:MA-Q4 |
38 | SI-19C4:MA-Q1 | SI-19C4:MA-Q2 | SI-19C3:MA-Q3 | SI-19C3:MA-Q4 |
39 | SI-20C1:MA-Q1 | SI-20C1:MA-Q2 | SI-20C2:MA-Q3 | SI-20C2:MA-Q4 |
40 | SI-20C4:MA-Q1 | SI-20C4:MA-Q2 | SI-20C3:MA-Q3 | SI-20C3:MA-Q4 |
SI-Fam:MA-QFA | SI-Fam:MA-QDA | SI-Fam:MA-QFP | SI-Fam:MA-QDP1 | SI-Fam:MA-QDP2 | SI-Fam:MA-QFB | SI-Fam:MA-QDB1 | SI-Fam:MA-QDB2 | |
---|---|---|---|---|---|---|---|---|
1 | SI-01M1:MA-QFA | SI-01M1:MA-QDA | SI-03M1:MA-QFP | SI-03M1:MA-QDP1 | SI-03M1:MA-QDP2 | SI-02M1:MA-QFB | SI-02M1:MA-QDB1 | SI-02M1:MA-QDB2 |
2 | SI-01M2:MA-QFA | SI-01M2:MA-QDA | SI-03M2:MA-QFP | SI-03M2:MA-QDP1 | SI-03M2:MA-QDP2 | SI-02M2:MA-QFB | SI-02M2:MA-QDB1 | SI-02M2:MA-QDB2 |
3 | SI-05M1:MA-QFA | SI-05M1:MA-QDA | SI-07M1:MA-QFP | SI-07M1:MA-QDP1 | SI-07M1:MA-QDP2 | SI-04M1:MA-QFB | SI-04M1:MA-QDB1 | SI-04M1:MA-QDB2 |
4 | SI-05M2:MA-QFA | SI-05M2:MA-QDA | SI-07M2:MA-QFP | SI-07M2:MA-QDP1 | SI-07M2:MA-QDP2 | SI-04M2:MA-QFB | SI-04M2:MA-QDB1 | SI-04M2:MA-QDB2 |
5 | SI-09M1:MA-QFA | SI-09M1:MA-QDA | SI-11M1:MA-QFP | SI-11M1:MA-QDP1 | SI-11M1:MA-QDP2 | SI-06M1:MA-QFB | SI-06M1:MA-QDB1 | SI-06M1:MA-QDB2 |
6 | SI-09M2:MA-QFA | SI-09M2:MA-QDA | SI-11M2:MA-QFP | SI-11M2:MA-QDP1 | SI-11M2:MA-QDP2 | SI-06M2:MA-QFB | SI-06M2:MA-QDB1 | SI-06M2:MA-QDB2 |
7 | SI-13M1:MA-QFA | SI-13M1:MA-QDA | SI-15M1:MA-QFP | SI-15M1:MA-QDP1 | SI-15M1:MA-QDP2 | SI-08M1:MA-QFB | SI-08M1:MA-QDB1 | SI-08M1:MA-QDB2 |
8 | SI-13M2:MA-QFA | SI-13M2:MA-QDA | SI-15M2:MA-QFP | SI-15M2:MA-QDP1 | SI-15M2:MA-QDP2 | SI-08M2:MA-QFB | SI-08M2:MA-QDB1 | SI-08M2:MA-QDB2 |
9 | SI-17M1:MA-QFA | SI-17M1:MA-QDA | SI-19M1:MA-QFP | SI-19M1:MA-QDP1 | SI-19M1:MA-QDP2 | SI-10M1:MA-QFB | SI-10M1:MA-QDB1 | SI-10M1:MA-QDB2 |
10 | SI-17M2:MA-QFA | SI-17M2:MA-QDA | SI-19M2:MA-QFP | SI-19M2:MA-QDP1 | SI-19M2:MA-QDP2 | SI-10M2:MA-QFB | SI-10M2:MA-QDB1 | SI-10M2:MA-QDB2 |
11 | SI-12M1:MA-QFB | SI-12M1:MA-QDB1 | SI-12M1:MA-QDB2 | |||||
12 | SI-12M2:MA-QFB | SI-12M2:MA-QDB1 | SI-12M2:MA-QDB2 | |||||
13 | SI-14M1:MA-QFB | SI-14M1:MA-QDB1 | SI-14M1:MA-QDB2 | |||||
14 | SI-14M2:MA-QFB | SI-14M2:MA-QDB1 | SI-14M2:MA-QDB2 | |||||
15 | SI-16M1:MA-QFB | SI-16M1:MA-QDB1 | SI-16M1:MA-QDB2 | |||||
16 | SI-16M2:MA-QFB | SI-16M2:MA-QDB1 | SI-16M2:MA-QDB2 | |||||
17 | SI-18M1:MA-QFB | SI-18M1:MA-QDB1 | SI-18M1:MA-QDB2 | |||||
18 | SI-18M2:MA-QFB | SI-18M2:MA-QDB1 | SI-18M2:MA-QDB2 | |||||
19 | SI-20M1:MA-QFB | SI-20M1:MA-QDB1 | SI-20M1:MA-QDB2 | |||||
20 | SI-20M2:MA-QFB | SI-20M2:MA-QDB1 | SI-20M2:MA-QDB2 |
Storage Ring Sextupole Families
SI-Fam:MA-SFA0 | SI-Fam:MA-SFA1 | SI-Fam:MA-SFA2 | SI-Fam:MA-SDA0 | SI-Fam:MA-SDA1 | SI-Fam:MA-SDA2 | SI-Fam:MA-SDA3 | |
---|---|---|---|---|---|---|---|
1 | SI-01M1:MA-SFA0 | SI-01C1:MA-SFA1 | SI-01C2:MA-SFA2 | SI-01M1:MA-SDA0 | SI-01C1:MA-SDA1 | SI-01C1:MA-SDA2 | SI-01C2:MA-SDA3 |
2 | SI-01M2:MA-SFA0 | SI-04C4:MA-SFA1 | SI-04C3:MA-SFA2 | SI-01M2:MA-SDA0 | SI-04C4:MA-SDA1 | SI-04C4:MA-SDA2 | SI-04C3:MA-SDA3 |
3 | SI-05M1:MA-SFA0 | SI-05C1:MA-SFA1 | SI-05C2:MA-SFA2 | SI-05M1:MA-SDA0 | SI-05C1:MA-SDA1 | SI-05C1:MA-SDA2 | SI-05C2:MA-SDA3 |
4 | SI-05M2:MA-SFA0 | SI-08C4:MA-SFA1 | SI-08C3:MA-SFA2 | SI-05M2:MA-SDA0 | SI-08C4:MA-SDA1 | SI-08C4:MA-SDA2 | SI-08C3:MA-SDA3 |
5 | SI-09M1:MA-SFA0 | SI-09C1:MA-SFA1 | SI-09C2:MA-SFA2 | SI-09M1:MA-SDA0 | SI-09C1:MA-SDA1 | SI-09C1:MA-SDA2 | SI-09C2:MA-SDA3 |
6 | SI-09M2:MA-SFA0 | SI-12C4:MA-SFA1 | SI-12C3:MA-SFA2 | SI-09M2:MA-SDA0 | SI-12C4:MA-SDA1 | SI-12C4:MA-SDA2 | SI-12C3:MA-SDA3 |
7 | SI-13M1:MA-SFA0 | SI-13C1:MA-SFA1 | SI-13C2:MA-SFA2 | SI-13M1:MA-SDA0 | SI-13C1:MA-SDA1 | SI-13C1:MA-SDA2 | SI-13C2:MA-SDA3 |
8 | SI-13M2:MA-SFA0 | SI-16C4:MA-SFA1 | SI-16C3:MA-SFA2 | SI-13M2:MA-SDA0 | SI-16C4:MA-SDA1 | SI-16C4:MA-SDA2 | SI-16C3:MA-SDA3 |
9 | SI-17M1:MA-SFA0 | SI-17C1:MA-SFA1 | SI-17C2:MA-SFA2 | SI-17M1:MA-SDA0 | SI-17C1:MA-SDA1 | SI-17C1:MA-SDA2 | SI-17C2:MA-SDA3 |
10 | SI-17M2:MA-SFA0 | SI-20C4:MA-SFA1 | SI-20C3:MA-SFA2 | SI-17M2:MA-SDA0 | SI-20C4:MA-SDA1 | SI-20C4:MA-SDA2 | SI-20C3:MA-SDA3 |
SI-Fam:MA-SFB0 | SI-Fam:MA-SFB1 | SI-Fam:MA-SFB2 | SI-Fam:MA-SDB0 | SI-Fam:MA-SDB1 | SI-Fam:MA-SDB2 | SI-Fam:MA-SDB3 | |
---|---|---|---|---|---|---|---|
1 | SI-02M1:MA-SFB0 | SI-01C4:MA-SFB1 | SI-01C3:MA-SFB2 | SI-02M1:MA-SDB0 | SI-01C4:MA-SDB1 | SI-01C4:MA-SDB2 | SI-01C3:MA-SDB3 |
2 | SI-02M2:MA-SFB0 | SI-02C1:MA-SFB1 | SI-02C2:MA-SFB2 | SI-02M2:MA-SDB0 | SI-02C1:MA-SDB1 | SI-02C1:MA-SDB2 | SI-02C2:MA-SDB3 |
3 | SI-04M1:MA-SFB0 | SI-03C4:MA-SFB1 | SI-03C3:MA-SFB2 | SI-04M1:MA-SDB0 | SI-03C4:MA-SDB1 | SI-03C4:MA-SDB2 | SI-03C3:MA-SDB3 |
4 | SI-04M2:MA-SFB0 | SI-04C1:MA-SFB1 | SI-04C2:MA-SFB2 | SI-04M2:MA-SDB0 | SI-04C1:MA-SDB1 | SI-04C1:MA-SDB2 | SI-04C2:MA-SDB3 |
5 | SI-06M1:MA-SFB0 | SI-05C4:MA-SFB1 | SI-05C3:MA-SFB2 | SI-06M1:MA-SDB0 | SI-05C4:MA-SDB1 | SI-05C4:MA-SDB2 | SI-05C3:MA-SDB3 |
6 | SI-06M2:MA-SFB0 | SI-06C1:MA-SFB1 | SI-06C2:MA-SFB2 | SI-06M2:MA-SDB0 | SI-06C1:MA-SDB1 | SI-06C1:MA-SDB2 | SI-06C2:MA-SDB3 |
7 | SI-08M1:MA-SFB0 | SI-07C4:MA-SFB1 | SI-07C3:MA-SFB2 | SI-08M1:MA-SDB0 | SI-07C4:MA-SDB1 | SI-07C4:MA-SDB2 | SI-07C3:MA-SDB3 |
8 | SI-08M2:MA-SFB0 | SI-08C1:MA-SFB1 | SI-08C2:MA-SFB2 | SI-08M2:MA-SDB0 | SI-08C1:MA-SDB1 | SI-08C1:MA-SDB2 | SI-08C2:MA-SDB3 |
9 | SI-10M1:MA-SFB0 | SI-09C4:MA-SFB1 | SI-09C3:MA-SFB2 | SI-10M1:MA-SDB0 | SI-09C4:MA-SDB1 | SI-09C4:MA-SDB2 | SI-09C3:MA-SDB3 |
10 | SI-10M2:MA-SFB0 | SI-10C1:MA-SFB1 | SI-10C2:MA-SFB2 | SI-10M2:MA-SDB0 | SI-10C1:MA-SDB1 | SI-10C1:MA-SDB2 | SI-10C2:MA-SDB3 |
11 | SI-12M1:MA-SFB0 | SI-11C4:MA-SFB1 | SI-11C3:MA-SFB2 | SI-12M1:MA-SDB0 | SI-11C4:MA-SDB1 | SI-11C4:MA-SDB2 | SI-11C3:MA-SDB3 |
12 | SI-12M2:MA-SFB0 | SI-12C1:MA-SFB1 | SI-12C2:MA-SFB2 | SI-12M2:MA-SDB0 | SI-12C1:MA-SDB1 | SI-12C1:MA-SDB2 | SI-12C2:MA-SDB3 |
13 | SI-14M1:MA-SFB0 | SI-13C4:MA-SFB1 | SI-13C3:MA-SFB2 | SI-14M1:MA-SDB0 | SI-13C4:MA-SDB1 | SI-13C4:MA-SDB2 | SI-13C3:MA-SDB3 |
14 | SI-14M2:MA-SFB0 | SI-14C1:MA-SFB1 | SI-14C2:MA-SFB2 | SI-14M2:MA-SDB0 | SI-14C1:MA-SDB1 | SI-14C1:MA-SDB2 | SI-14C2:MA-SDB3 |
15 | SI-16M1:MA-SFB0 | SI-15C4:MA-SFB1 | SI-15C3:MA-SFB2 | SI-16M1:MA-SDB0 | SI-15C4:MA-SDB1 | SI-15C4:MA-SDB2 | SI-15C3:MA-SDB3 |
16 | SI-16M2:MA-SFB0 | SI-16C1:MA-SFB1 | SI-16C2:MA-SFB2 | SI-16M2:MA-SDB0 | SI-16C1:MA-SDB1 | SI-16C1:MA-SDB2 | SI-16C2:MA-SDB3 |
17 | SI-18M1:MA-SFB0 | SI-17C4:MA-SFB1 | SI-17C3:MA-SFB2 | SI-18M1:MA-SDB0 | SI-17C4:MA-SDB1 | SI-17C4:MA-SDB2 | SI-17C3:MA-SDB3 |
18 | SI-18M2:MA-SFB0 | SI-18C1:MA-SFB1 | SI-18C2:MA-SFB2 | SI-18M2:MA-SDB0 | SI-18C1:MA-SDB1 | SI-18C1:MA-SDB2 | SI-18C2:MA-SDB3 |
19 | SI-20M1:MA-SFB0 | SI-19C4:MA-SFB1 | SI-19C3:MA-SFB2 | SI-20M1:MA-SDB0 | SI-19C4:MA-SDB1 | SI-19C4:MA-SDB2 | SI-19C3:MA-SDB3 |
20 | SI-20M2:MA-SFB0 | SI-20C1:MA-SFB1 | SI-20C2:MA-SFB2 | SI-20M2:MA-SDB0 | SI-20C1:MA-SDB1 | SI-20C1:MA-SDB2 | SI-20C2:MA-SDB3 |
SI-Fam:MA-SFP0 | SI-Fam:MA-SFP1 | SI-Fam:MA-SFP2 | SI-Fam:MA-SDP0 | SI-Fam:MA-SDP1 | SI-Fam:MA-SDP2 | SI-Fam:MA-SDP3 | |
---|---|---|---|---|---|---|---|
1 | SI-03M1:MA-SFP0 | SI-02C4:MA-SFP1 | SI-02C3:MA-SFP2 | SI-03M1:MA-SDP0 | SI-02C4:MA-SDP1 | SI-02C4:MA-SDP2 | SI-02C3:MA-SDP3 |
2 | SI-03M2:MA-SFP0 | SI-03C1:MA-SFP1 | SI-03C2:MA-SFP2 | SI-03M2:MA-SDP0 | SI-03C1:MA-SDP1 | SI-03C1:MA-SDP2 | SI-03C2:MA-SDP3 |
3 | SI-07M1:MA-SFP0 | SI-06C4:MA-SFP1 | SI-06C3:MA-SFP2 | SI-07M1:MA-SDP0 | SI-06C4:MA-SDP1 | SI-06C4:MA-SDP2 | SI-06C3:MA-SDP3 |
4 | SI-07M2:MA-SFP0 | SI-07C1:MA-SFP1 | SI-07C2:MA-SFP2 | SI-07M2:MA-SDP0 | SI-07C1:MA-SDP1 | SI-07C1:MA-SDP2 | SI-07C2:MA-SDP3 |
5 | SI-11M1:MA-SFP0 | SI-10C4:MA-SFP1 | SI-10C3:MA-SFP2 | SI-11M1:MA-SDP0 | SI-10C4:MA-SDP1 | SI-10C4:MA-SDP2 | SI-10C3:MA-SDP3 |
6 | SI-11M2:MA-SFP0 | SI-11C1:MA-SFP1 | SI-11C2:MA-SFP2 | SI-11M2:MA-SDP0 | SI-11C1:MA-SDP1 | SI-11C1:MA-SDP2 | SI-11C2:MA-SDP3 |
7 | SI-15M1:MA-SFP0 | SI-14C4:MA-SFP1 | SI-14C3:MA-SFP2 | SI-15M1:MA-SDP0 | SI-14C4:MA-SDP1 | SI-14C4:MA-SDP2 | SI-14C3:MA-SDP3 |
8 | SI-15M2:MA-SFP0 | SI-15C1:MA-SFP1 | SI-15C2:MA-SFP2 | SI-15M2:MA-SDP0 | SI-15C1:MA-SDP1 | SI-15C1:MA-SDP2 | SI-15C2:MA-SDP3 |
9 | SI-19M1:MA-SFP0 | SI-18C4:MA-SFP1 | SI-18C3:MA-SFP2 | SI-19M1:MA-SDP0 | SI-18C4:MA-SDP1 | SI-18C4:MA-SDP2 | SI-18C3:MA-SDP3 |
10 | SI-19M2:MA-SFP0 | SI-19C1:MA-SFP1 | SI-19C2:MA-SFP2 | SI-19M2:MA-SDP0 | SI-19C1:MA-SDP1 | SI-19C1:MA-SDP2 | SI-19C2:MA-SDP3 |
Booster Magnets
Booster Dipoles
There is only one type of dipole in the Booster. It is a multi-functional magnet with dipolar, defocusing quadrular and sextupolar functions.
BO Dipole Magnet Specifications
Main Parameters
BD | units | ||
Power supply type | monopolar1 | ||
Number of magnets | 50 | ||
Deflection angle | 7.2 | ° | |
Magnetic length | 1.221 | m | |
Physical length | 1.206 | m | |
Integrated quadrupole strength2 | -0.2477 | m-1 | |
Integrated sextupole strength2 | -2.5610 | m-2 | |
Full central gap | 28.0 | mm | |
Hardedge bending radius | 9.7164 | m | |
Hardedge quadrupole strength | -0.2029 | m-2 | |
Hardedge sextupole strength | -2.0975 | m-3 | |
Hardedge sagitta2 | 18.836 | mm | |
Good field region (GFR) | 6 | mm | |
Homogeneity in GFR | 4/10000 | ||
Maximum integrated field3 | -1.3204 | T·m | |
Injection | Extraction | ||
Integrated field2 | -0.0629 | -1.2575 | T·m |
Integrated quadrupole gradient2 | 0.1239 | 2.4788 | T |
Integrated sextupole gradient2 | 1.2814 | 25.6277 | T·m-1 |
Hardedge field | -0.0515 | -1.0299 | T |
Hardedge quadrupole gradient | 0.1015 | 2.0302 | T·m-1 |
Hardedge sextupole gradient | 1.0495 | 20.9891 | T·m-2 |
1 Two monopolar power supplies will be used, each exciting alternate north and south pole coils of consecutive dipoles.
2 On the Runge-Kutta trajectory.
3 The maximum integrated field is 5% higher than the integrated field at extraction energy. This is required by the adopted ramping curve.
Electric Parameters
BD | units | |
Main coil current | 1034.00 | A |
Main coil number of turns | 12 | |
Stored magnetic energy | 2450.92 | J |
Magnet inductance | 4.58 | mH |
Multipole Errors
Field analysis of the 3D model of the dipole shows very small residual multipoles. The larger systematic multipole values in Table 42, which do not compromise beam quality, are kept as specifications for measurements of the magnets in the future. Random multipole errors were chosen so that the rms multipolar contribution at r0 = 17.5 mm were 1/1000 of the nominal dipolar field. This contribution was then equally divided amoung the multipoles considered. On the other hand, normal sextupolar random 1σ value was set to 9 % of the maximum strength. All these values should be used as targets for the magnet modelling and measurements. Eventually the multipole values will be updated with measurement data and tested against beam dynamics simulations.
Multipole error | Systematic | Random | ||
Normal | Skew | |||
Dipoles @r = 17.5 mm |
B2/B0 (sextupole) | -- | 5.5×10-4 * | 1.0×10-4 |
B3/B0 (octupole) | +4.0×10-4 | 4.0×10-4 | 1.0×10-4 | |
B4/B0 (decapole) | -3.6×10-4 | 4.0×10-4 | 1.0×10-4 | |
B5/B0 (12-pole) | +2.7×10-4 | 4.0×10-4 | 1.0×10-4 | |
B6/B0 (14-pole) | -1.3×10-4 | 4.0×10-4 | 1.0×10-4 |
- * This spec is replicated in the dipole alignment and rotation errors table
- Actual designed dipole model shows numbers are that in accordance with these specs. (see fieldmap analysis)
Alignment and Excitation Errors
Dipoles | ||
Transverse position, ![]() ![]() |
160 | μm |
Rotation around longitudinal axis | 0.8 | mrad |
Excitation error (static or low frequency) | 0.15 | % |
Dipole Gradient Error | 2.4 | % |
Dipole Sextupolar Error | 9 | % |
BO Dipole Magnet 3D Model
Fieldmap Analysis
Each dipole in the booster deflects the beam in 7.2 ° nominally. A 3D magnetic model has been created and its fieldmap analyzed for a excitation current corresponding to 3.0 GeV. The model has been optimized in a way that the beam trajectory is roughly centered at the good-field region of the magnet, corresponding to the axis x = 0 mm. At the longitudinal center of the magnet the trajectory starts at x = 9.045 mm. The reference point, defined as the interception of the straight lines asymptotically tangent to the up and downstream trajectory branches, is located at x = 28.572 mm, at the longitudinal center of the magnet. Multipoles from fieldmap analysis are all very well within specifications. A summary of the analysis for extraction energy can be found in analysis.txt
at this folder. As for low energy, the corresponding file can be found in here.
Segmented Model
In order to take into account the s-dependent field profile of the BO dipoles a symmetric model was created.
Table with segmented dipole model
Segment# | Length [m] | Deflection [deg.] | Field [T] | K [m-2] * | S [m-3] * |
01 | 0.1960 | 1.158 | -1.032 | -0.228 | -1.990 |
02 | 0.1920 | 1.143 | -1.040 | -0.212 | -1.930 |
03 | 0.1820 | 1.096 | -1.052 | -0.186 | -1.920 |
04 | 0.0100 | 0.051 | -0.889 | -0.249 | -2.030 |
05 | 0.0100 | 0.037 | -0.641 | -0.170 | -1.470 |
06 | 0.0130 | 0.033 | -0.440 | -0.062 | -1.820 |
07 | 0.0170 | 0.029 | -0.299 | -0.011 | -1.970 |
08 | 0.0200 | 0.022 | -0.195 | +0.005 | -1.600 |
09 | 0.0300 | 0.018 | -0.107 | +0.005 | -0.930 |
10 | 0.0500 | 0.012 | -0.043 | +0.002 | -0.361 |
* K=B'/(Bρ), S=B"/(2Bρ)
Constructed from simulated fieldmap at extraction energy
BO Dipole Magnet Measurements
The magnetic measurement results for Booster dipoles at the extraction current, I= 991.63 A, are shown in Figure 52 , Figure 53 and Figure 54. The Hall probe measurement files can be found at this folder. The excitation curve measurement files can be found at this folder.
Booster Quadrupoles
BO Quadrupole Magnets Specifications
Main Parameters
QF | QD | QS | units | |
Power supply type | monopolar | bipolar | bipolar | |
Magnet model name | BQF | BQD | BQS | |
Number of magnets | 50 | 25 | 1 | |
Maximum integrated strength 1 | 0.425 | -0.052 | 0.017 | m-1 |
Magnetic length | 0.228 | 0.100 | 0.100 | m |
Physical length | 0.212 | 0.085 | 0.100 | m |
Maximum strength 1 | 1.865 | -0.525 | 0.168 | m-2 |
Bore diameter | 40 | 40 | 40 | mm |
Maximum integrated field gradient 1 | -4.255 | 0.525 | 0.168 | T |
Maximum field gradient 1 | -18.664 | 5.254 | 1.600 | T·m-1 |
Maximum field at pole tip 1 | 0.373 | 0.105 | 0.032 | T |
1 The maximum field gradient is 5% higher than the field gradient at extraction energy. This is required by the adopted ramping curve.
Electric Parameters
QF | QD | QS | units | |
Main coil current | 113.97 | 30.42 | 9.64 | A |
Main coil number of turns | 26.25 | 27.50 | 28.00 | |
Stored magnetic energy | 59.34 | 2.42 | 0.22 | J |
Magnet inductance | 9.14 | 5.22 | 4.68 | mH |
Multipole Errors
Multipole error | Systematic1 | Random | ||
Normal | Skew | |||
quadrupoles @r = 17.5 mm |
B2/B1 (sextupole) | -- | 7.0×10-4 | 1.0×10-3 |
B3/B1 (octupole) | -- | 4.0×10-4 | 5.0×10-4 | |
B4/B1 (decapole) | -- | 4.0×10-4 | 1.0×10-4 | |
B5/B1 (12-pole) | -1.0×10-3 | 4.0×10-4 | 1.0×10-4 | |
B6/B1 (14-pole) | -- | 4.0×10-4 | 1.0×10-4 | |
B7/B1 (16-pole) | -- | 4.0×10-4 | 1.0×10-4 | |
B8/B1 (18-pole) | -- | 4.0×10-4 | 1.0×10-4 | |
B9/B1 (20-pole) | +1.1×10-3 | -- | -- | |
B13/B1 (28-pole) | +8.0×10-5 | -- | -- |
1 Multipoles of prototype magnets measured with radial rotating coils
Multipole error | Systematic1 | Random | ||
Normal | Skew | |||
quadrupoles @r = 17.5 mm |
B2/B1 (sextupole) | -- | 7.0×10-4 | 1.0×10-3 |
B3/B1 (octupole) | -- | 4.0×10-4 | 5.0×10-4 | |
B4/B1 (decapole) | -- | 4.0×10-4 | 1.0×10-4 | |
B5/B1 (12-pole) | -4.7×10-3 | 4.0×10-4 | 1.0×10-4 | |
B6/B1 (14-pole) | -- | 4.0×10-4 | 1.0×10-4 | |
B7/B1 (16-pole) | -- | 4.0×10-4 | 1.0×10-4 | |
B8/B1 (18-pole) | -- | 4.0×10-4 | 1.0×10-4 | |
B9/B1 (20-pole) | +1.2×10-3 | -- | -- | |
B13/B1 (28-pole) | +5.4×10-7 | -- | -- |
1Relative multipoles calculated around the Runge-Kutta trajectory for the latest QD model-02 fieldmap at 3 GeV
Multipole error | Systematic1 | Random | ||
Normal | Skew | |||
quadrupoles @r = 17.5 mm |
A3/A1 (octupole) | -1.1×10-3 | -- | -- |
A5/A1 (12-pole) | +9.9×10-3 | -- | -- | |
A7/A1 (16-pole) | -8.7×10-3 | -- | -- | |
A9/A1 (20-pole) | +6.4×10-3 | -- | -- |
1Relative multipoles calculated around the Runge-Kutta trajectory for the latest QS model-01, fieldmap at 3 GeV
Alignment and Excitation Errors
Quadrupoles | ||
Transverse position, ![]() ![]() |
160 | μm |
Rotation around longitudinal axis | 0.8 | mrad |
Excitation error (static or low frequency) | 0.3 | % |
Tracking error | 100 | ppm |
BO Quadrupole 3D Models
Fieldmap Analysis
There will be two types of quadrupoles: QF and QD. QF quadrupoles are longer, 212-mm, whereas QD quadrupoles are shorter: 85-mm long. While QF magnets power supply is planed to be monopolar, the power supply for the QD family will be dipolar. 3D magnetic models for both QD and QF quadrupoles were analyzed. Nominal quadrupole field component in the booster dipoles provide most necessary defocusing for the optics and hence QD quadrupoles are installed in the lattice for optics correction purposes.
QF at Ejection Energy
A summary of the analysis can be found in analysis.txt
at this folder.
QF at Injection Energy
A summary of the analysis can be found in analysis.txt
at this folder.
QD at Ejection Energy
A summary of the analysis can be found in analysis.txt
at this folder.
QD at Injection Energy
A summary of the analysis can be found in analysis.txt
at this folder.
QS at Ejection Energy
A summary of the analysis can be found in analysis.txt
at this folder.
Segmented Model
Currently booster quadrupoles are being modelled as a single segment within the hard-edge approximation.
Segment# | Length [m] | Deflection [deg.] | Field [T] | K [m-2] * | S [m-3] * |
01 | 0.1140 | 0.000 | -0.000e+00 | +1.870e+00 | +0.000e+00 |
* K=B'/(Bρ), S=B"/(2Bρ)
Segment# | Length [m] | Deflection [deg.] | Field [T] | K [m-2] * | S [m-3] * |
01 | 0.0500 | 0.000 | -0.000e+00 | -5.000e-01 | -0.000e+00 |
* K=B'/(Bρ), S=B"/(2Bρ)
Segment# | Length [m] | Deflection [deg.] | Field [T] | K [m-2] * | S [m-3] * |
01 | 0.0500 | 0.000 | -0.000e+00 | -1.680e-01 | -0.000e+00 |
* K=B'/(Bρ), S=B"/(2Bρ)
BO Quadrupole Magnet Measurements
The magnetic measurement results for Booster QF quadrupoles at high current, I=130 A, are shown in Figure 64 and Figure 65. The rotating coil measurement files can be found at this folder.
The magnetic measurement results for Booster QD quadrupoles at high current, I=32 A, are shown in Figure 66 and Figure 67. The rotating coil measurement files can be found at this folder.
Booster Sextupoles
BO Sextupole Magnet Specifications
Main Parameters
SF | SD | units | |
Power supply type | monopolar | bipolar | |
Number of magnets | 25 | 10 | |
Maximum integrated strength 1 | 2.1 | 2.1 | m-2 |
Magnetic length | 0.105 | 0.105 | m |
Physical length | 0.100 | 0.100 | m |
Maximum strength 1 | 20.0 | 20.0 | m-3 |
Bore diameter | 40 | 40 | mm |
Maximum integrated field gradient 1 | 21.015 | 21.015 | T·m-1 |
Maximum gradient 1 | 200.1 | 200.1 | T·m-2 |
Maximum field at pole tip 1 | 0.080 | 0.080 | T |
1 The maximum field gradient is 5% higher than the field gradient at extraction energy. This is required by the adopted ramping curve.
Electric Parameters
BS | units | |
Main coil current | 142.00 | A |
Main coil number of turns | 3.00 | |
Stored magnetic energy | 0.98 | J |
Magnet inductance | 0.10 | mH |
Multipole Errors
Multipole error | Systematic1 | Random | ||
Normal | Skew | |||
sextupoles @x = 17.5 mm |
B3/B2 (octupole) | -- | 4.0×10-4 | 1.0×10-4 |
B4/B2 (decapole) | -- | 4.0×10-4 | 1.0×10-4 | |
B5/B2 (12-pole) | -- | 4.0×10-4 | 1.0×10-4 | |
B6/B2 (14-pole) | -- | 4.0×10-4 | 1.0×10-4 | |
B7/B2 (16-pole) | -- | 4.0×10-4 | 1.0×10-4 | |
B8/B2 (18-pole) | -2.7×10-2 | 4.0×10-4 | 1.0×10-4 | |
B9/B2 (20-pole) | -- | 4.0×10-4 | 1.0×10-4 | |
B14/B2 (30-pole) | -1.4×10-2 | -- | -- |
1Relative multipoles calculated around the Runge-Kutta trajectory for the latest sextupole model-03 fieldmap at 3 GeV
Alignment and Excitation Errors
Sextupoles | ||
Transverse position, ![]() ![]() |
160 | μm |
Rotation around longitudinal axis | 0.8 | mrad |
Excitation error (static or low frequency) | 0.3 | % |
BO Sextupole 3D Model
Fieldmap Analysis
There will be 25 focusing sextupoles (SF) and 10 defocusing sextupoles (SD) in the booster for chromaticity control. A 105-mm long 3D magnetic model for both SF and SD sextupoles was analyzed. SF family of magnets will be excited with a monopolar power supply whereas SD sextupoles family will be excited with a bipolar power supply. Analysis has been done for fieldmaps corresponding to injection and extraction energy currents. Since the magnetic field is very linear with the excitation current the two results are virtually identical with respect to field quality.
SD/SF at Ejection Energy
A summary of the analysis can be found in analysis.txt
at this folder.
SD/SF at Injection Energy
A summary of the analysis can be found in analysis.txt
at this folder.
Segmented Model
Currently booster sextupoles are being modelled as a single segment within the hard-edge approximation.
Segment# | Length [m] | Deflection [deg.] | Field [T] | K [m-2] * | S [m-3] * |
01 | 0.0525 | 0.000 | -0.000e+00 | +0.000e+00 | +1.900e+01 |
* K=B'/(Bρ), S=B"/(2Bρ)
BO Sextupole Magnet Measurements
The magnetic measurement results for Booster sextupoles at high current, I=150 A, are shown in Figure 71 and Figure 72. The rotating coil measurement files can be found at this folder.
Booster Correctors
BO Corrector Magnets Specifications
Main parameters
CH | CV | units | |
Power supply type | bipolar | bipolar | |
Number of magnets | 25 | 25 | |
Maximum kick angle @ 3 GeV | 310 | 310 | μrad |
Magnetic length | 0.150 | 0.150 | m |
Physical length | 0.112 | 0.112 | m |
Central Gap | 43.0 | 43.0 | mm |
Minimum Gap | 40.0 | 40.0 | mm |
Maximum integrated field | 3.10×10-3 | 3.10×10-3 | T·m |
Maximum field | 2.07×10-2 | 2.07×10-2 | T |
Electric parameters
CH/CV | units | |
Maximum main coil current | 9.35 | A |
Main coil number of turns | 38.50 | |
Stored magnetic energy | 0.15 | J |
Magnet inductance | 3.37 | mH |
Multipole Errors
The impact of residual multipole errors of reasonable correctors on the booster beam parameters is expected to be negligible and therefore no specification had been defined. The designed 3D model of these correctors showed acceptable multipole erros.
BO Corrector 3D Model
Orbit correctors for the booster use a single model for both horizontal and vertical deflections.
Fieldmap Analysis
There will be 25 horizontal and 25 vertical orbit correctors in the booster for orbit control. There will be one magnet model for both corrector types. Vertical corrector magnets are the same as horizontal correctors rotated by 90 degrees. The following are the analysis summaries created with fma-analysis.py
CH at Ejection Energy
A summary of the analysis can be found in analysis.txt
at this folder.
CV at Ejection Energy
A summary of the analysis can be found in analysis.txt
at this folder.
Segmented Model
Currently the hard-edge approximation is being used to model all booster correctors.
Segment# | Length [m] | Deflection [deg.] | Field [T] | K [m-2] * | S [m-3] * |
01 | 0.0750 | 0.000 | -2.121e-02 | +3.400e-06 | +1.940e-02 |
* K=B'/(Bρ), S=B"/(2Bρ)
BO Corrector Magnet Measurements
The magnetic measurement results for Booster corrector at I=10 A are shown in Figure 76. The rotating coil measurement files can be found at this folder.
Booster Magnets Ramping Curve
For beam energy ramping in the Booster from 0.15 GeV to 3.0 GeV, the booster main magnetic elements will follow cycling curves with main parameters defined in Table 62. The cycling waveform shape will be a rounded triangle with rise time longer than fall time, as shown in Figure 77, a scaled universal curve where the extraction current at 3.0 GeV is set to 1 A. The maximum current is 5% higher than the extraction current.
Cycling frequency | 2 | Hz |
Cycling period | 500 | ms |
Number of points per cycle | 2048 | |
Uniform time interval between points | 244 | μs |

Booster Magnets Installation
Sector | Girder | Magnets | BS | BQF | BQS | BQD | BD | BC |
B01 | LS-CENTRAL-003-UNI-0029 | CORR-QUAD | -- | BQF-042 | -- | -- | -- | BC-022 |
---|---|---|---|---|---|---|---|---|
LS-DIPOLO-002-UNI-0011 | DIP | -- | -- | -- | -- | BD-010 | -- | |
B02 | LS-BSKEW-001-UNI-0001 | SEXT-QUAD-QSKEW | BS-007 | BQF-007 | BQS-001 | -- | -- | -- |
LS-DIPOLO-002-UNI-0018 | QUAD-DIP-SEXT | BS-035 | -- | -- | BQD-002 | BD-037 | -- | |
B03 | LS-BCH-001-UNI-0003 | CORR | -- | -- | -- | -- | -- | BC-027 |
LS-CENTRAL-003-UNI-0022 | CORR-QUAD | -- | BQF-045 | -- | -- | -- | BC-021 | |
LS-DIPOLO-003-UNI-0022 | DIP | -- | -- | -- | -- | BD-050 | -- | |
B04 | LS-CENTRAL-002-UNI-0016 | SEXT-QUAD | BS-013 | BQF-051 | -- | -- | -- | -- |
LS-DIPOLO-003-UNI-0023 | QUAD-DIP-CORR | -- | -- | -- | BQD-007 | BD-047 | BC-062 | |
B05 | LS-CENTRAL-006-UNI-0051 | CORR-QUAD | -- | BQF-043 | -- | -- | -- | BC-020 |
LS-DIPOLO-004-UNI-0040 | DIP | -- | -- | -- | -- | BD-044 | -- | |
B06 | LS-CENTRAL-002-UNI-0011 | SEXT-QUAD | BS-014 | BQF-024 | -- | -- | -- | -- |
LS-DIPOLO-002-UNI-0012 | QUAD-DIP-CORR | -- | -- | -- | BQD-018 | BD-008 | BC-015 | |
B07 | LS-CENTRAL-003-UNI-0027 | CORR-QUAD | -- | BQF-015 | -- | -- | -- | BC-037 |
LS-DIPOLO-001-UNI-0003 | DIP-SEXT | BS-034 | -- | -- | -- | BD-024 | -- | |
B08 | LS-CENTRAL-001-UNI-0001 | SEXT-QUAD | BS-017 | BQF-049 | -- | -- | -- | -- |
LS-DIPOLO-003-UNI-0024 | QUAD-DIP-CORR | -- | -- | -- | BQD-017 | BD-043 | BC-060 | |
B09 | LS-CENTRAL-005-UNI-0050 | CORR-QUAD | -- | BQF-016 | -- | -- | -- | BC-036 |
LS-DIPOLO-004-UNI-0038 | DIP | -- | -- | -- | -- | BD-026 | -- | |
B10 | LS-CENTRAL-002-UNI-0014 | SEXT-QUAD | BS-016 | BQF-034 | -- | -- | -- | -- |
LS-DIPOLO-005-UNI-0041 | QUAD-DIP-CORR | -- | -- | -- | BQD-004 | BD-027 | BC-025 | |
B11 | LS-CENTRAL-001-UNI-0005 | CORR-QUAD | -- | BQF-023 | -- | -- | -- | BC-040 |
LS-DIPOLO-002-UNI-0020 | DIP | -- | -- | -- | -- | BD-004 | -- | |
B12 | LS-CENTRAL-002-UNI-0015 | SEXT-QUAD | BS-019 | BQF-033 | -- | -- | -- | -- |
LS-DIPOLO-001-UNI-0009 | QUAD-DIP-SEXT | BS-039 | -- | -- | BQD-006 | BD-057 | -- | |
B13 | LS-BCH-001-UNI-0005 | CORR | -- | -- | -- | -- | -- | BC-024 |
LS-CENTRAL-003-UNI-0024 | CORR-QUAD | -- | BQF-035 | -- | -- | -- | BC-035 | |
LS-DIPOLO-005-UNI-0050 | DIP | -- | -- | -- | -- | BD-017 | -- | |
B14 | LS-CENTRAL-002-UNI-0017 | SEXT-QUAD | BS-018 | BQF-047 | -- | -- | -- | -- |
LS-DIPOLO-001-UNI-0005 | QUAD-DIP-CORR | -- | -- | -- | BQD-024 | BD-009 | BC-047 | |
B15 | LS-CENTRAL-005-UNI-0041 | CORR-QUAD | -- | BQF-037 | -- | -- | -- | BC-034 |
LS-DIPOLO-003-UNI-0026 | DIP | -- | -- | -- | -- | BD-028 | -- | |
B16 | LS-CENTRAL-002-UNI-0018 | SEXT-QUAD | BS-020 | BQF-053 | -- | -- | -- | -- |
LS-DIPOLO-005-UNI-0043 | QUAD-DIP-CORR | -- | -- | -- | BQD-021 | BD-041 | BC-041 | |
B17 | LS-CENTRAL-006-UNI-0052 | CORR-QUAD | -- | BQF-041 | -- | -- | -- | BC-033 |
LS-DIPOLO-003-UNI-0027 | DIP-SEXT | BS-043 | -- | -- | -- | BD-025 | -- | |
B18 | LS-CENTRAL-002-UNI-0013 | SEXT-QUAD | BS-021 | BQF-052 | -- | -- | -- | -- |
LS-DIPOLO-003-UNI-0025 | QUAD-DIP-CORR | -- | -- | -- | BQD-016 | BD-013 | BC-044 | |
B19 | LS-CENTRAL-004-UNI-0035 | CORR-QUAD | -- | BQF-011 | -- | -- | -- | BC-039 |
LS-DIPOLO-001-UNI-0004 | DIP | -- | -- | -- | -- | BD-031 | -- | |
B20 | LS-CENTRAL-001-UNI-0007 | SEXT-QUAD | BS-022 | BQF-032 | -- | -- | -- | -- |
LS-DIPOLO-001-UNI-0008 | QUAD-DIP-CORR | -- | -- | -- | BQD-027 | BD-054 | BC-026 | |
B21 | LS-CENTRAL-004-UNI-0031 | CORR-QUAD | -- | BQF-048 | -- | -- | -- | BC-013 |
LS-DIPOLO-006-UNI-0051 | DIP | -- | -- | -- | -- | BD-021 | -- | |
B22 | LS-CENTRAL-004-UNI-0034 | SEXT-QUAD | BS-025 | BQF-030 | -- | -- | -- | -- |
LS-DIPOLO-002-UNI-0016 | QUAD-DIP-SEXT | BS-037 | -- | -- | BQD-014 | BD-030 | -- | |
B23 | LS-BCH-001-UNI-0001 | CORR | -- | -- | -- | -- | -- | BC-019 |
LS-CENTRAL-005-UNI-0045 | CORR-QUAD | -- | BQF-009 | -- | -- | -- | BC-010 | |
LS-DIPOLO-005-UNI-0045 | DIP | -- | -- | -- | -- | BD-035 | -- | |
B24 | LS-CENTRAL-001-UNI-0003 | SEXT-QUAD | BS-026 | BQF-050 | -- | -- | -- | -- |
LS-DIPOLO-004-UNI-0031 | QUAD-DIP-CORR | -- | -- | -- | BQD-012 | BD-032 | BC-059 | |
B25 | LS-CENTRAL-002-UNI-0020 | CORR-QUAD | -- | BQF-025 | -- | -- | -- | BC-016 |
LS-DIPOLO-005-UNI-0042 | DIP | -- | -- | -- | -- | BD-007 | -- | |
B26 | LS-CENTRAL-001-UNI-0002 | SEXT-QUAD | BS-029 | BQF-040 | -- | -- | -- | -- |
LS-DIPOLO-004-UNI-0035 | QUAD-DIP-CORR | -- | -- | -- | BQD-015 | BD-018 | BC-011 | |
B27 | LS-CENTRAL-004-UNI-0040 | CORR-QUAD | -- | BQF-036 | -- | -- | -- | BC-009 |
LS-DIPOLO-002-UNI-0013 | DIP-SEXT | BS-042 | -- | -- | -- | BD-029 | -- | |
B28 | LS-CENTRAL-003-UNI-0028 | SEXT-QUAD | BS-031 | BQF-038 | -- | -- | -- | -- |
LS-DIPOLO-003-UNI-0028 | QUAD-DIP-CORR | -- | -- | -- | BQD-026 | BD-034 | BC-029 | |
B29 | LS-CENTRAL-005-UNI-0047 | CORR-QUAD | -- | BQF-056 | -- | -- | -- | BC-012 |
LS-DIPOLO-006-UNI-0052 | DIP | -- | -- | -- | -- | BD-014 | -- | |
B30 | LS-CENTRAL-001-UNI-0006 | SEXT-QUAD | BS-023 | BQF-031 | -- | -- | -- | -- |
LS-DIPOLO-004-UNI-0032 | QUAD-DIP-CORR | -- | -- | -- | BQD-005 | BD-052 | BC-058 | |
B31 | LS-CENTRAL-005-UNI-0042 | CORR-QUAD | -- | BQF-055 | -- | -- | -- | BC-053 |
LS-DIPOLO-002-UNI-0019 | DIP | -- | -- | -- | -- | BD-053 | -- | |
B32 | LS-CENTRAL-004-UNI-0038 | SEXT-QUAD | BS-027 | BQF-054 | -- | -- | -- | -- |
LS-DIPOLO-001-UNI-0010 | QUAD-DIP-SEXT | BS-036 | -- | -- | BQD-009 | BD-055 | -- | |
B33 | LS-BCH-001-UNI-0002 | CORR | -- | -- | -- | -- | -- | BC-018 |
LS-CENTRAL-003-UNI-0021 | CORR-QUAD | -- | BQF-029 | -- | -- | -- | BC-054 | |
LS-DIPOLO-005-UNI-0047 | DIP | -- | -- | -- | -- | BD-036 | -- | |
B34 | LS-CENTRAL-001-UNI-0009 | SEXT-QUAD | BS-024 | BQF-019 | -- | -- | -- | -- |
LS-DIPOLO-003-UNI-0029 | QUAD-DIP-CORR | -- | -- | -- | BQD-011 | BD-045 | BC-014 | |
B35 | LS-CENTRAL-003-UNI-0026 | CORR-QUAD | -- | BQF-028 | -- | -- | -- | BC-055 |
LS-DIPOLO-001-UNI-0002 | DIP | -- | -- | -- | -- | BD-046 | -- | |
B36 | LS-CENTRAL-002-UNI-0012 | SEXT-QUAD | BS-015 | BQF-020 | -- | -- | -- | -- |
LS-DIPOLO-001-UNI-0006 | QUAD-DIP-CORR | -- | -- | -- | BQD-019 | BD-022 | BC-038 | |
B37 | LS-CENTRAL-003-UNI-0023 | CORR-QUAD | -- | BQF-027 | -- | -- | -- | BC-049 |
LS-DIPOLO-005-UNI-0048 | DIP-SEXT | BS-040 | -- | -- | -- | BD-038 | -- | |
B38 | LS-CENTRAL-001-UNI-0010 | SEXT-QUAD | BS-033 | BQF-012 | -- | -- | -- | -- |
LS-DIPOLO-005-UNI-0049 | QUAD-DIP-CORR | -- | -- | -- | BQD-022 | BD-039 | BC-048 | |
B39 | LS-CENTRAL-004-UNI-0037 | CORR-QUAD | -- | BQF-046 | -- | -- | -- | BC-050 |
LS-DIPOLO-004-UNI-0034 | DIP | -- | -- | -- | -- | BD-042 | -- | |
B40 | LS-CENTRAL-005-UNI-0049 | SEXT-QUAD | BS-030 | BQF-022 | -- | -- | -- | -- |
LS-DIPOLO-002-UNI-0015 | QUAD-DIP-CORR | -- | -- | -- | BQD-001 | BD-016 | BC-043 | |
B41 | LS-CENTRAL-003-UNI-0030 | CORR-QUAD | -- | BQF-057 | -- | -- | -- | BC-051 |
LS-DIPOLO-004-UNI-0036 | DIP | -- | -- | -- | -- | BD-040 | -- | |
B42 | LS-CENTRAL-005-UNI-0044 | SEXT-QUAD | BS-028 | BQF-058 | -- | -- | -- | -- |
LS-DIPOLO-002-UNI-0017 | QUAD-DIP-SEXT | BS-041 | -- | -- | BQD-023 | BD-049 | -- | |
B43 | LS-BCH-001-UNI-0004 | CORR | -- | -- | -- | -- | -- | BC-028 |
LS-CENTRAL-005-UNI-0043 | CORR-QUAD | -- | BQF-044 | -- | -- | -- | BC-056 | |
LS-DIPOLO-003-UNI-0030 | DIP | -- | -- | -- | -- | BD-005 | -- | |
B44 | LS-CENTRAL-004-UNI-0033 | SEXT-QUAD | BS-008 | BQF-039 | -- | -- | -- | -- |
LS-DIPOLO-004-UNI-0037 | QUAD-DIP-CORR | -- | -- | -- | BQD-010 | BD-048 | BC-057 | |
B45 | LS-CENTRAL-005-UNI-0046 | CORR-QUAD | -- | BQF-018 | -- | -- | -- | BC-052 |
LS-DIPOLO-001-UNI-0007 | DIP | -- | -- | -- | -- | BD-023 | -- | |
B46 | LS-CENTRAL-003-UNI-0025 | SEXT-QUAD | BS-010 | BQF-014 | -- | -- | -- | -- |
LS-DIPOLO-004-UNI-0039 | QUAD-DIP-CORR | -- | -- | -- | BQD-013 | BD-051 | BC-046 | |
B47 | LS-CENTRAL-001-UNI-0008 | CORR-QUAD | -- | BQF-021 | -- | -- | -- | BC-017 |
LS-DIPOLO-003-UNI-0021 | DIP-SEXT | BS-038 | -- | -- | -- | BD-033 | -- | |
B48 | LS-CENTRAL-004-UNI-0032 | SEXT-QUAD | BS-012 | BQF-017 | -- | -- | -- | -- |
LS-DIPOLO-005-UNI-0044 | QUAD-DIP-CORR | -- | -- | -- | BQD-003 | BD-019 | BC-045 | |
B49 | LS-CENTRAL-002-UNI-0019 | CORR-QUAD | -- | BQF-026 | -- | -- | -- | BC-023 |
LS-DIPOLO-005-UNI-0046 | DIP | -- | -- | -- | -- | BD-011 | -- | |
B50 | LS-CENTRAL-004-UNI-0039 | SEXT-QUAD | BS-032 | BQF-013 | -- | -- | -- | -- |
LS-DIPOLO-002-UNI-0014 | QUAD-DIP-CORR | -- | -- | -- | BQD-008 | BD-020 | BC-061 |
TB Transfer Line Magnets
TB Dipoles and septum
The TB dipoles and septum main parameters are shown in Table 64.
Spectrometer | Dipole | Septum | ||
Number | 1 | 3 | 1 | |
Magnetic length | 0.450 | 0.304 | 0.500 | m |
Physical length | -- | 0.2945 | -- | m |
Deflection angle | 15.0 | 15.0 | 21.75 | ° |
Hardedge bending radius | 1.719 | 1.161 | 1.317 | m |
Hardedge magnetic field | 0.291 | 0.431 | 0.380 | T |
Quadrupole gradient | 0 | 0 | 0 | T/m |
Hardedge sagitta | 14.7 | 9.293 | 23.7 | mm |
TB Dipole | units | |
Main coil current | 254 | A |
Main coil number of turns | 23 | |
Stored magnetic energy | 116.6 | J |
Magnet inductance | 3.7 | mH |
TB Dipole Magnet 3D Model
Fieldmap Analysis
A 3D magnetic model has been created and its fieldmap analyzed. A summary of the analysis can be found in analysis.txt
at this folder.
Segmented Model
In order to take into account the s-dependent field profile of the TB dipoles a symmetric model was created.
Table with segmented dipole model
Segment# | Length [m] | Deflection [deg.] | Field [T] | K [m-2] * | S [m-3] * |
01 | 0.0800 | 3.966 | -0.433 | -0.001 | -0.074 |
02 | 0.0200 | 0.990 | -0.432 | -0.021 | -0.268 |
03 | 0.0200 | 0.940 | -0.410 | -0.644 | -4.760 |
04 | 0.0200 | 0.645 | -0.282 | -1.630 | -6.590 |
05 | 0.0200 | 0.382 | -0.167 | -0.775 | -13.400 |
06 | 0.0200 | 0.244 | -0.107 | -0.374 | -14.100 |
07 | 0.0300 | 0.205 | -0.060 | -0.213 | -9.210 |
08 | 0.0300 | 0.129 | -0.037 | -0.138 | -6.080 |
* K=B'/(Bρ), S=B"/(2Bρ)
Constructed from simulated fieldmap at nominal energy
TB Dipole Magnet Measurements
A summary of magnet field measurements will eventually be documented here.
TB Quadrupoles
The quadrupoles in the TB transfer line (TB-QD) use the same yoke as the Booster 8.5 cm long quadrupoles BQD (effective length of 10 cm). A new set of coils is used to allow higher gradient with a 10 A power supply. In the first TB sector (just after the last Linac accelerating structure), there are 4 quadrupoles (a quadrupole triplet and a focus quadrupole) that will be purchased as part of the Linac. The TB quadrupoles main parameters are shown in Table 67 and their detailed configuration in Table 69.
Part of Linac | TB | ||
Model name | Linac | BQD | |
Number | 4 | 10 | |
Physical length | 0.050 / 0.100 | 0.085 | m |
Magnetic length | -- | 0.100 | m |
Maximum field gradient | 10.0 | 8.000 | T·m-1 |
Bore diameter | 40.0 | 40.0 | mm |
Maximum field at pole tip | 0.2 | 0.16 | T |
TB Quadrupole | units | |
Main coil current | 10.00 | A |
Main coil number of turns | 140 | |
Stored magnetic energy | 5.62 | J |
Magnet inductance | 112.4 | mH |
Quadrupole | Eff. Length [m] | dB/dx [T/m] @ E=150 MeV | |||||
M1 | M2 | M3 | M4 | M5 | M6 | ||
QD1 | 0.100 | -8.42 | -- | -- | -- | -- | -- |
QF1 | 0.100 | 13.15 | -- | -- | -- | -- | -- |
QD2A | 0.100 | -5.00 | -- | -- | -- | -- | -- |
QF2A | 0.100 | 6.78 | -- | -- | -- | -- | -- |
QF2B | 0.100 | 2.90 | -- | -- | -- | -- | -- |
QD2B | 0.100 | -2.98 | -- | -- | -- | -- | -- |
QF3 | 0.100 | 7.96 | -- | -- | -- | -- | -- |
QD3 | 0.100 | -2.01 | -- | -- | -- | -- | -- |
QF4 | 0.100 | 11.53 | -- | -- | -- | -- | -- |
QD4 | 0.100 | -7.08 | -- | -- | -- | -- | -- |
TB Quadrupole Magnet 3D Model
Fieldmap Analysis
A 3D magnetic model has been created and its fieldmap analyzed. A summary of the analysis can be found in analysis.txt
at this folder.
Segmented Model
In order to take into account the s-dependent field profile of the TB quadrupoles a symmetric model was created.
Table with segmented quadrupole model
Segment# | Length [m] | Deflection [deg.] | Field [T] | K [m-2] * | S [m-3] * |
01 | 0.0500 | 0.000 | -0.000e+00 | +1.600e+01 | +0.000e+00 |
* K=B'/(Bρ), S=B"/(2Bρ)
Constructed from simulated fieldmap at maximum excitation current.
TB Quadrupole Magnet Measurements
A summary of magnet field measurements will eventually be documented here.
TB Correctors
The main TB corrector parameters are shown in Table 71.
TB Corrector Magnet Specifications
Main Parameters
Type of corrector | Number | Max. θ (mrad) | ∫B.ds [T.m] @ E=150 MeV |
Septum | 1 | ± 6.8 | ± 3.4E-03 |
CH | 5 | ± 2.5 | ± 1.25E-03 |
CV | 6 | ± 2.5 | ± 1.25E-03 |
TB Corrector Magnet 3D Model
Fieldmap Analysis
CH
A summary of the analysis can be found in analysis.txt
at this folder.
CV
A summary of the analysis can be found in analysis.txt
at this folder.
Segmented Model
Currently the hard-edge approximation is being used to model TB correctors.
Segment# | Length [m] | Deflection [deg.] | Field [T] | K [m-2] * | S [m-3] * |
01 | 0.0405 | 0.000 | -1.916e-02 | -4.400e-06 | -4.840e+01 |
* K=B'/(Bρ), S=B"/(2Bρ)
TB Corrector Magnet Measurements
TS Transfer Line Magnets
TS Dipoles and septa
The TS dipoles and septum main parameters are shown in Table 73.
The TS dipoles are mechanically the same as the Booster dipoles but the deflection angle has been reduced from +7.2 ° (Booster) to +5.012 ° (TS). This is necessary to avoid overheating of the coils since BTS dipoles will operate in DC regime while Booster dipoles operate in CW mode.
Dipoles | Thin ext. septum | Thick ext. septum | Thick inj. septum | Thin inj. septum | ||
Number | 3 | 1 | 1 | 2 | 1 | |
Magnetic length | 1.216 | 0.577 | 0.577 | 0.577 | 0.500 | m |
Physical length | 1.206 | -- | -- | -- | -- | m |
Deflection angle | +5.012 | -3.600 | -3.600 | +3.600 | +3.118 | ° |
Hardedge bending radius | 13.902 | -9.188 | -9.188 | 9.188 | 9.188 | m |
Integrated magnetic field | 0.875 | -0.629 | -0.629 | 0.629 | 0.545 | T·m |
Integrated quadrupole strength | -0.169 | - | - | - | - | m-1 |
Hardedge sagitta | 13.40 | 4.53 | 4.53 | 4.53 | 3.40 | mm |
TS Dipole | units | |
Main coil current | 680.10 | A |
Main coil number of turns | 12 | |
Stored magnetic energy | 1075.88 | J |
Magnet inductance | 4.65 | mH |
TS Dipole Magnet 3D Model
Same model as for BO dipoles.
Fieldmap Analysis
A 3D magnetic model has been created and its fieldmap analyzed. A summary of the analysis can be found in analysis.txt
at this folder.
Segmented Model
In order to take into account the s-dependent field profile of the TS dipoles a symmetric model was created.
Table with segmented dipole model
Segment# | Length [m] | Deflection [deg.] | Field [T] | K [m-2] * | S [m-3] * |
01 | 0.1960 | 0.808 | -0.720 | -0.151 | -1.350 |
02 | 0.1920 | 0.796 | -0.724 | -0.144 | -1.330 |
03 | 0.1820 | 0.761 | -0.730 | -0.132 | -1.320 |
04 | 0.0100 | 0.035 | -0.618 | -0.158 | -1.140 |
05 | 0.0100 | 0.025 | -0.445 | -0.100 | -0.858 |
06 | 0.0130 | 0.023 | -0.306 | -0.036 | -1.100 |
07 | 0.0170 | 0.020 | -0.208 | -0.007 | -1.240 |
08 | 0.0200 | 0.016 | -0.136 | +0.002 | -1.040 |
09 | 0.0300 | 0.013 | -0.074 | +0.002 | -0.616 |
10 | 0.0500 | 0.009 | -0.030 | +0.001 | -0.243 |
* K=B'/(Bρ), S=B"/(2Bρ)
Constructed from simulated fieldmap at nominal energy
TS Quadrupoles
Table 76 lists main specifications for TS quadrupoles (same as the storage ring quadrupoles) and Table 77 their detailed configuration.
Magnet model name | Q14 | Q20 | |
Number | 5 | 3 | |
Quadrupoles | QF1A,QF1B,QD2,QD4A,QD4B | QF2,QF3,QF4 | |
Maximum gradient | 37.23 | 45.43 | T·m-1 |
Bore diameter | 28 | 28 | mm |
Maximum field at pole tip | 0.52 | 0.64 | T |
Quadrupole | Length [m] | dB/dx [T/m] @ E=3 GeV | |
M1 | M2 | ||
QF1A | 0.14 | 16.4 | 17.6 |
QF1B | 0.14 | 12.6 | 15 |
QD2 | 0.14 | -34 | -34.1 |
QF2 | 0.2 | 26.9 | 27.1 |
QF3 | 0.2 | 32.7 | 31.5 |
QD4A | 0.14 | -33.4 | -32.1 |
QF4 | 0.2 | 40.8 | 40.5 |
QD4B | 0.14 | -17 | -17.7 |
TS Correctors
Table 78 lists main specifications for TS correctors
Length | 0.1 | m |
Number of horizontal correctors | 4 | |
Number of septa used as horizontal correctors | 2 | |
Number of vertical correctors | 6 | |
Maximum strength | ±0.35 | mrad |
Maximum field (E=3 GeV) | ± 3.50E-03 | T.m |
Magnet Colors
dipoles | RAL 5012 |
quadrupoles | RAL 2008 |
sextupoles | RAL 6021 |
correctors | N6,5 Munsell |
coils | |
girders | RAL 9010 |
pulsed magnets | RAL 3000 |