Machine:Magnets

From .:: Wiki-Sirius ::.
Jump to: navigation, search

Contents

Storage Ring Magnets

At this point all magnets have been designed, simulated and approved. A few prototype magnets (quadrupoles) have been measured mechanical and magnetically. Overall magnetic measurements with rotating coil and Hall probe systems are still pending.

Storage Ring Dipoles

Dipoles in Sirius are of three distinct families: B1, B2 and BC. The first two, B1 and B2, are electromagnetic dipoles, whereas BC is a NdFeB permanent magnet dipole made of a thin 3.2 T slice sandwiched between two low field sector dipoles.

SI Dipole Magnet Specifications

Main Parameters

Main parameters for the electromagnetic dipoles B1 and B2 are shown in Table 1, and for the permanent magnet superbend BC in Table 2.

Table 1: Storage ring dipoles B1 and B2 main parameters. A parallel face, curved dipole is assumed (constant B and dB/dx along trajectory).
B1 B2 units
Excitation monopolar power supply monopolar power supply
Number of magnets 40 40
Deflection angle 2.7553 4.0964 °
Magnetic length 0.853 1.263 m
Physical length 0.807 1.21239 m
Integrated quadrupole strength1 -0.6461 -0.9588 m-1
Integrated sextupole strength1 0.0 0.0 m-2
Full central gap2 24.0 24.0 mm
Hardedge bending radius 17.7379 17.6654 m
Hardedge quadrupole strength -0.7574 -0.7591 m-2
Hardedge sextupole strength 0.0 0.0 m-3
Hardedge sagitta 5.127 11.286 mm
Integrated field1 -0.48 -0.72 T·m
Integrated quadrupole gradient 1 6.4652 9.5946 T
Integrated sextupole gradient1 0.0 0.0 T·m-1
Hardedge field -0.5642 -0.5665 T
Hardedge quadrupole gradient 7.5794 7.5967 T·m-1
Hardedge sextupole gradient 0.0 0.0 T·m-2
Quadrupole flexibility 10.0 10.0  %

1 On the Runge-Kutta trajectory.

2 Full gap at the horizontal central position, where Runge-Kutta beam trajectory is centered.

Table 2: Storage ring BC dipole main parameters.
BC
Excitation permanent NdFeB magnets
Number of magnets 20
Magnet length 0.828 m
Magnetic arc length 0.920 m
Deflection angle 4.2966 °
Peak field 3.20 T
Full gap at peak field 10.20 mm
Bending radius at peak field 3.1272 m
Critical energy at peak field 19.2 keV
Integrated field -0.75042 T·m
Integrated gradient 6.2511 T
Electric parameters

Table 3: Storage ring dipoles B1 and B2 electric parameters
B1 B2 units
Main coil current 394.10 394.10 A
Main coil number of turns 24 24
Stored magnetic energy 677.32 1003.66 J
Magnet inductance 8.72 12.92 mH
Multipole Errors

Table 4: Storage ring dipole multipole errors. Contribution of multipolar components relative to main dipolar field at x = 12 mm. Standard deviation for random multipole errors; simulations assume Gaussian distribution truncated at ±2σ.
Multipole error Systematic Random
Normal Normal Skew
B2/B0 (sextupole) 1.5×10-4 1.5×10-4 0.5×10-4
B3/B0 (octupole) -7.2×10-5 1.5×10-4 0.5×10-4
B4/B0 (decapole) -5.6×10-4 1.5×10-4 0.5×10-4
B5/B0 (12-pole) 6.7×10-5 1.5×10-4 0.5×10-4
B6/B0 (14-pole) 3.8×10-4 - -
Alignment and Excitation Errors

Table 5: Maximum absolute value of random alignment and excitation errors for Storage Ring Dipoles. The errors are generated with a Gaussian distribution truncated at ±1σ.
Dipole Unit Blocks Girders
Transverse position, , 40 80 μm
Rotation around longitudinal axis 0.30 0.30 mrad
Strength error (static or low frequency) 0.05 --  %
Dipole Gradient error 0.1 --  %

SI Dipole Magnet 3D Models

BC

The BC dipoles in the Sirius storage ring is composed of a central high field slice with 1.1395 ° of deflection and two flanking low field sectors with 1.57855 °. There is a control gap in the back of the dipole that can be used to adjust the magnetic field. Additionally, the low field poles can be moved transversely to adjust the integrated field and the pole between the low and high field sectors can be rotated about the longitudinal axis to correct the integrated quadrupole gradient.


Figure 1: 3D drawing of the BC dipole model.
Figure 2: Field of the BC dipole half model.


Fieldmap Analysis

Nominally BC dipoles should deflect the beam in 4.2966 °. A 3D model of BC has been analyzed and approved. Fieldmap corresponding to one value for the control gap has been considered, namely 3.2 mm. A summary of the analysis can be found in analysis.txt at this folder.


Segmented Model

In order to take into account the s-dependent field profile of the BC dipoles a symmetric model was created with 15 segments at each side of the magnet. Their segmentation points were chosen in a way to minimize the difference between integrals of the squared profile between for the model and the field on the Runge-Kutta trajectory.


Figure 3: Field profile of segmented BC dipole model. Red curve corresponds to the field on Runge-Kutta trajectory.


Table 6: SI BC dipole segmented model.
Segment# Length [m] Deflection [deg.] Field [T] K [m-2] * S [m-3] *
01 0.0010 0.018 -3.231 -0.001 -27.800
02 0.0040 0.072 -3.153 -0.005 -24.800
03 0.0050 0.080 -2.805 -0.021 -17.800
04 0.0050 0.068 -2.371 -0.027 -11.000
05 0.0050 0.058 -2.040 -0.027 -7.650
06 0.0100 0.096 -1.672 -0.026 -5.620
07 0.0100 0.074 -1.289 -0.026 -3.920
08 0.0100 0.056 -0.980 -0.025 -2.380
09 0.0100 0.044 -0.772 -0.021 -1.030
10 0.0320 0.116 -0.631 -0.023 +0.903
11 0.0320 0.097 -0.528 -0.148 +0.286
12 0.1600 0.625 -0.682 -0.888 +0.341
13 0.1600 0.628 -0.686 -0.903 +0.177
14 0.0120 0.043 -0.622 -0.874 +0.068
15 0.0140 0.033 -0.418 -0.434 -2.100
16 0.0160 0.019 -0.212 -0.107 -2.050
17 0.0350 0.020 -0.099 -0.019 -1.180

* K=B'/(Bρ), S=B"/(2Bρ)

B1
Figure 4: 3D drawing of the B1 dipole model.
Figure 5: Field of the B1 dipole half model.
Fieldmap Analysis

Nominally B1 dipoles should deflect the beam in 2.7553 °. So far a preliminary 3D model of B1 has been analyzed and approved. Field map corresponding to the nominal excited field has been considered. The latest analyzed fieldmap can be accessed here. A summary of the analysis can be found in analysis.txt at accessed this folder.


Segmented Model

In order to take into account the s-dependent field profile of the B1 dipoles a symmetric model was created with 15 segments at each side of the magnet. Their segmentation points were chosen in a way to minimize the difference between integrals of the squared profile between for the model and the field on the Runge-Kutta trajectory.


Figure 6: Field profile of segmented B1 dipole model


Table 7: SI B1 dipole segmented model.
Segment# Length [m] Deflection [deg.] Field [T] K [m-2] * S [m-3] *
01 0.0020 0.006 -0.562 -0.753 -0.297
02 0.0030 0.010 -0.562 -0.756 -0.245
03 0.0050 0.016 -0.564 -0.762 -0.117
04 0.0050 0.016 -0.566 -0.770 -0.015
05 0.0050 0.016 -0.567 -0.774 +0.004
06 0.0100 0.033 -0.568 -0.775 -0.003
07 0.0400 0.130 -0.567 -0.774 +0.019
08 0.1500 0.483 -0.563 -0.773 +0.055
09 0.1000 0.322 -0.563 -0.773 +0.076
10 0.0500 0.162 -0.565 -0.774 +0.008
11 0.0340 0.105 -0.540 -0.777 -0.159
12 0.0160 0.033 -0.363 -0.428 -2.230
13 0.0400 0.033 -0.143 -0.085 -1.960
14 0.0400 0.008 -0.034 -0.009 -0.428
15 0.0500 0.005 -0.016 -0.001 -0.102

* K=B'/(Bρ), S=B"/(2Bρ)

B2
Figure 7: 3D drawing of the B2 dipole model.
Figure 8: Field of the B2 dipole half model.
Fieldmap Analysis

Nominally B1 dipoles should deflect the beam in 4.0964 °. So far a preliminary 3D model of B2 has been analyzed and approved. Field map corresponding to the nominal excited field has been considered. The latest analyzed fieldmap can be accessed here. A summary of the analysis can be found in analysis.txt at accessed this folder.


Segmented Model

In order to take into account the s-dependent field profile of the B2 dipoles a symmetric model was created with 17 segments at each side of the magnet. Their segmentation points were chosen in a way to minimize the difference between integrals of the squared profile between for the model and the field on the Runge-Kutta trajectory.


Figure 9: Field profile of segmented B2 dipole model


Table 8: SI B2 dipole segmented model.
Segment# Length [m] Deflection [deg.] Field [T] K [m-2] * S [m-3] *
01 0.1250 0.405 -0.566 -0.774 +0.045
02 0.0550 0.179 -0.569 -0.774 +0.028
03 0.0100 0.033 -0.570 -0.774 +0.018
04 0.0050 0.016 -0.568 -0.767 -0.019
05 0.0050 0.016 -0.566 -0.759 -0.150
06 0.0050 0.016 -0.565 -0.753 -0.268
07 0.0050 0.016 -0.566 -0.756 -0.195
08 0.0100 0.033 -0.568 -0.768 -0.011
09 0.0100 0.033 -0.570 -0.774 +0.022
10 0.1750 0.568 -0.567 -0.773 +0.081
11 0.1750 0.567 -0.566 -0.773 +0.107
12 0.0200 0.063 -0.553 -0.791 -0.030
13 0.0100 0.028 -0.480 -0.682 -0.204
14 0.0150 0.030 -0.345 -0.361 -2.440
15 0.0200 0.022 -0.192 -0.108 -2.480
16 0.0300 0.014 -0.084 -0.026 -1.220
17 0.0320 0.005 -0.029 -0.005 -0.359
18 0.0325 0.004 -0.022 -0.001 -0.149

* K=B'/(Bρ), S=B"/(2Bρ)

SI Dipole Magnet Measurements

A summary of magnet field measurements of SI BC dipole. The Hall probe measurement files can be found at this folder.

BC

Analysis of BC hallprobe measurements. The analysis results can be found at this folder with subfolders x0-0p0079mm which contains results based on Runge-Kutta trajectory and x0-0p0079mm-reftraj holds the results based on reference trajectory. The initial x coordinate used was + 79um. The reference point is 7.703087 mm for reference trajectory.

Summary
rx position of reference point:     +7.703087 mm
initial rx position of trajectory:  +0.079092 mm
         /---------------------------------------------------------------------------------------\
         |       DeflectionAngle[deg]   |            KL[1/m]          |         SL[1/m²]         |
         |       Avg ± Std       MaxMin |      Avg ± Std      MaxMin  |     Avg ± Std     MaxMin |
/--------|------------------------------|-----------------------------|--------------------------|
| BC     |  +2.14829 ± 0.00016  0.00060 |  -0.3127 ± 0.0002   0.0008  |   -0.35 ± 0.074   0.24   |
| Diff[%]|  -0.00048 ± 0.00743  0.02801 |  -0.0554 ± 0.0595   0.2446  |   21.05 ± 16.75  54.60   |
\------------------------------------------------------------------------------------------------/


The values used to calculate the difference to model were:

Deflection angle: 2.1483 deg

KL: - 0.31267 1/m

SL: -0.35037 1/m²

Deflection Angle
Figure 10: Deflection angle calculated with reference trajectory, initial point at x = +79 um and the reference point is 7.703087mm.
Integrated Quadrupole
Figure 11: Integrated quadrupole calculated with reference trajectory, initial point at x = +79 um and the reference point is 7.703087mm.
Integrated Sextupole
Figure 12: Integrated sextupole calculated with reference trajectory, initial point at x = +79 um and the reference point is 7.703087mm.
B1

Analysis of B1 hallprobe measurements. The analysis results can be found at this folder with subfolders x0-8p527mm which contains results based on Runge-Kutta trajectory and x0-8p527mm-reftraj holds the results based on reference trajectory. The initial point of reference trajectory is 8.5270 mm and reference point is 13.6929 mm.

Summary
rx position of reference point:     +13.692930 mm
initial rx position of trajectory:  +8.527000 mm
         /---------------------------------------------------------------------------------------\
         |       DeflectionAngle[deg]   |            KL[1/m]          |         SL[1/m²]         |
         |       Avg ± Std       MaxMin |      Avg ± Std      MaxMin  |      Avg ± Std    MaxMin |
/--------|------------------------------|-----------------------------|--------------------------|
| B1     |  +1.37760 ± 0.00029  0.00103 |  -0.3228 ± 0.0002   0.0007  |   -0.096 ± 0.015   0.056 |
| Diff[%]|  -0.00354 ± 0.02085  0.07471 |  +0.0393 ± 0.0623   0.2133  |   +11.08 ± 13.95   52.17 |
\------------------------------------------------------------------------------------------------/

The values used to calculate the difference to model were:

Deflection angle: 1.37765 deg

KL: -0.32289 1/m

SL: -0.10763 1/m²

Deflection Angle
Figure 13: Deflection angle at current 403.6 A calculated with reference trajectory, initial point at x = 8.527 mm and reference point is 13.6929 mm.
Integrated Quadrupole
Figure 14: Integrated gradient at current 403.6 A calculated with reference trajectory, initial point at x = 8.527 mm and reference point is 13.6929 mm.
Integrated Sextupole
Figure 15: Integrated sextupole at current 403.6 A calculated with reference trajectory, initial point at x = 8.527 mm and reference point is 13.6929 mm.
B2

Analysis of B2 hallprobe measurements. The analysis results can be found at this folder with subfolders x0-8p153mm which contains results based on Runge-Kutta trajectory and x0-8p153mm-reftraj holds the results based on reference trajectory. The initial point of reference trajectory is 8.1530 mm and reference point is 19.4278 mm.

Summary
rx position of reference point:     +19.427847 mm
initial rx position of trajectory:  +8.153000 mm
         /---------------------------------------------------------------------------------------\
         |       DeflectionAngle[deg]   |            KL[1/m]          |         SL[1/m²]         |
         |       Avg ± Std       MaxMin |      Avg ± Std      MaxMin  |      Avg ± Std    MaxMin |
/--------|------------------------------|-----------------------------|--------------------------|
| B2     |  +2.04820 ± 0.00045  0.00146 |  -0.4794 ± 0.0003   0.0011  |   -0.096 ± 0.011   0.058 |
| Diff[%]|  -0.00011 ± 0.02175  0.07151 |  +0.0841 ± 0.0596   0.2288  |   +2.388 ± 11.45   58.42 |
\------------------------------------------------------------------------------------------------/

The values used to calculate the difference to model were:

Deflection angle: 2.0482 deg

KL: -0.47982 1/m

SL: -0.09868 1/m²

Deflection Angle
Figure 16: Deflection angle at current 401.8 A calculated with reference trajectory and initial point at x = 8.153 mm and reference point is 19.4278 mm.
Integrated Quadrupole
Figure 17: Integrated gradient at current 401.8 A calculated with reference trajectory and initial point at x = 8.153 mm and reference point is 19.4278 mm.
Integrated Sextupole
Figure 18: Integrated sextupole at current 401.8 A calculated with reference trajectory and initial point at x = 8.153 mm and reference point is 19.4278 mm.

SI Dipole Magnet Sorting

B1 Installation Order

Table 9: Storage Ring Dipoles B1 Installation.
Magnet Name Magnet Serial ID
SI-01C1:MA-B1 B1-025
SI-01C4:MA-B1 B1-040
SI-02C1:MA-B1 B1-003
SI-02C4:MA-B1 B1-031
SI-03C1:MA-B1 B1-029
SI-03C4:MA-B1 B1-038
SI-04C1:MA-B1 B1-004
SI-04C4:MA-B1 B1-005
SI-05C1:MA-B1 B1-024
SI-05C4:MA-B1 B1-016
SI-06C1:MA-B1 B1-012
SI-06C4:MA-B1 B1-030
SI-07C1:MA-B1 B1-018
SI-07C4:MA-B1 B1-011
SI-08C1:MA-B1 B1-033
SI-08C4:MA-B1 B1-013
SI-09C1:MA-B1 B1-015
SI-09C4:MA-B1 B1-042
SI-10C1:MA-B1 B1-021
SI-10C4:MA-B1 B1-019
SI-11C1:MA-B1 B1-043
SI-11C4:MA-B1 B1-009
SI-12C1:MA-B1 B1-036
SI-12C4:MA-B1 B1-034
SI-13C1:MA-B1 B1-020
SI-13C4:MA-B1 B1-010
SI-14C1:MA-B1 B1-027
SI-14C4:MA-B1 B1-002
SI-15C1:MA-B1 B1-023
SI-15C4:MA-B1 B1-014
SI-16C1:MA-B1 B1-035
SI-16C4:MA-B1 B1-032
SI-17C1:MA-B1 B1-039
SI-17C4:MA-B1 B1-017
SI-18C1:MA-B1 B1-028
SI-18C4:MA-B1 B1-037
SI-19C1:MA-B1 B1-006
SI-19C4:MA-B1 B1-046
SI-20C1:MA-B1 B1-041
SI-20C4:MA-B1 B1-026
Not Used
Magnet Name Magnet Serial ID
--- B1-022


B2 Installation Order

Table 10: Storage Ring Dipoles B2 Installation.
Magnet Name Magnet Serial ID
SI-01C2:MA-B2 B2-002
SI-01C3:MA-B2 B2-001
SI-02C2:MA-B2 B2-010
SI-02C3:MA-B2 B2-011
SI-03C2:MA-B2 B2-017
SI-03C3:MA-B2 B2-014
SI-04C2:MA-B2 B2-032
SI-04C3:MA-B2 B2-043
SI-05C2:MA-B2 B2-022
SI-05C3:MA-B2 B2-045
SI-06C2:MA-B2 B2-004
SI-06C3:MA-B2 B2-015
SI-07C2:MA-B2 B2-023
SI-07C3:MA-B2 B2-037
SI-08C2:MA-B2 B2-008
SI-08C3:MA-B2 B2-013
SI-09C2:MA-B2 B2-019
SI-09C3:MA-B2 B2-030
SI-10C2:MA-B2 B2-033
SI-10C3:MA-B2 B2-007
SI-11C2:MA-B2 B2-042
SI-11C3:MA-B2 B2-016
SI-12C2:MA-B2 B2-034
SI-12C3:MA-B2 B2-018
SI-13C2:MA-B2 B2-036
SI-13C3:MA-B2 B2-038
SI-14C2:MA-B2 B2-021
SI-14C3:MA-B2 B2-005
SI-15C2:MA-B2 B2-006
SI-15C3:MA-B2 B2-029
SI-16C2:MA-B2 B2-003
SI-16C3:MA-B2 B2-027
SI-17C2:MA-B2 B2-040
SI-17C3:MA-B2 B2-044
SI-18C2:MA-B2 B2-031
SI-18C3:MA-B2 B2-028
SI-19C2:MA-B2 B2-026
SI-19C3:MA-B2 B2-025
SI-20C2:MA-B2 B2-046
SI-20C3:MA-B2 B2-009
Not Used
Magnet Name Magnet Serial ID
--- B2-024

Storage Ring Quadrupoles

There will be three types of quadrupole magnets in the Sirius lattice: Q14, Q20 and Q30, labeled as such according to their hard-edge lengths in simulations. Magnets from families QDA, QDB1, QDB2, QDP1 and QDP2 will be of type Q14; magnets from families QFA, Q1, Q2, Q3 and Q4 will be of type Q20; and magnets from families QFB and QFP will be of type Q30.

SI Quadrupole Magnet Specifications

Main Parameters

Table 11 lists main specifications for the quadrupoles.

Table 11: Storage ring quadrupole magnets specification
Q14 Q20 Q30 units
Number of magnets 70 170 30
Magnetic length 1 0.140 0.200 0.300 m
Maximum strength 1 3.72 4.54 4.54 m-2
Bore diameter 28 28 28 mm
Field flexibility for individual quadrupole 2 ± 10 ± 5 ± 5  %
Maximum integrated strength 3 0.5208 0.908 1.362 m-1
Maximum integrated field gradient 3 5.21 9.09 13.63 T
Maximum field gradient 3 37.23 45.43 45.43 T·m-1
Maximum field at pole tip 3 0.52 0.64 0.64 T

1 Maximum values required for excitation with the main coils only.

2 Obtained with trim coils.

3 Derived parameters from base specification parameters.
Electric parameters

Table 12: Storage ring quadrupole electric parameters
Q14 Q20 Q30 units
Main coil current 146.60 154.66 153.80 A
Main coil number of turns 20.00 23.25 23.25
Maximum trim coil current 10.00 10.00 10.00 A
Trim coil number of turns 28.00 18.00 18.00
Stored magnetic energy 72.45 140.33 211.01 J
Magnet inductance 6.74 11.73 17.84 mH
Multipole Errors

Table 13: Storage ring quadrupole multipole errors. Contribution of multipolar components relative to main quadrupolar field at x = 12 mm. Standard deviation for random multipole errors; simulations assume Gaussian distribution truncated at ±2σ.
Multipole error Q14
Systematic
Normal
Q20
Systematic
Normal
Q30
Systematic
Normal
Random
Normal Skew
B2/B1 (sextupole) 1.5×10-4 0.5×10-4
B3/B1 (octupole) 1.5×10-4 0.5×10-4
B4/B1 (decapole) 1.5×10-4 0.5×10-4
B5/B1 (12-pole) -3.9×10-4 -4.1×10-4 -4.3×10-4 1.5×10-4 0.5×10-4
B9/B1 (20-pole) +1.7×10-3 +1.7×10-3 +1.8×10-3
B13/B1 (20-pole) -8.0×10-4 -7.7×10-4 -8.1×10-4
B17/B1 (20-pole) +8.5×10-5 +5.9×10-5 +7.2×10-5
Alignment and Excitation Errors

Table 14: Maximum absolute value of random alignment and excitation errors for the Storage Ring Quadrupoles. The errors are generated with a Gaussian distribution truncated at ±1σ.
Quadrupoles
Transverse position, , 40 μm
Rotation around longitudinal axis 0.30 mrad
Strength error (static or low frequency) 0.05  %

SI Quadrupole Magnet 3D Models

All three types of quadrupoles models, namely Q14, Q20 and Q30 quadrupoles, have been designed, analyzed and approved.

Figure 19: 3D drawing of the Q14 quadrupole model.
Figure 20: Field of the Q14 quadrupole model.
Figure 21: 3D drawing of the Q20 quadrupole model.
Figure 22: Field of the Q20 quadrupole model.
Figure 23: 3D drawing of the Q30 quadrupole model.
Figure 24: Field of the Q30 quadrupole model.
Fieldmap Analysis
Q14

The 3D magnetic model of Q14 has been analyzed and approved, corresponding to maximum quadrupole strength, both family and trim coils excited. Analysis data for the latest model fieldmap can be accessed here. A summary of the analysis can be found in analysis.txt at this folder.

Q20

The 3D magnetic model of Q20 has been analyzed and approved, corresponding to maximum quadrupole strength, both family and trim coils excited. Analysis data for the latest model fieldmap can be accessed here. A summary of the analysis can be found in analysis.txt at this folder.

Q30

The 3D magnetic model of Q30 has been analyzed and approved, corresponding to maximum quadrupole strength, both family and trim coils excited. Analysis data for the latest model fieldmap can be accessed here. A summary of the analysis can be found in analysis.txt at this folder.


Table 15 brings the main fieldmap analysis results.

Table 15: Storage ring quadrupole magnet 3D-model parameters
Q14 Q20 Q30 units
Physical length 1 0.1255 0.1865 0.2890 m
Magnetic length 2 0.1401 0.2001 0.3003 m
Maximum main coil current 160 / 3040 150 / 3600 150 / 3600 A / A.turns
Maximum trim coil current 10 / 180 10 / 180 10 / 180 A / A.turns
Maximum integrated field gradient 5.730 9.611 14.44 T
Relative multipole (n=5) 3 -2.7×10-4 -3.2×10-4 -4.4×10-4
Relative multipole (n=9) 3 +1.5×10-3 +1.7×10-3 +1.8×10-3
Relative multipole (n=13) 3 -6.3×10-4 -6.5×10-4 -6.7×10-4

1 with end plates but without coils.

2 integrated gradient divided by gradient at longitudinal center.

3 normal integrated multipoles divided by integrated quadrupole at x = 11.7 mm.
Segmented Model

Currently the hard-edge approximation is being used to model all quadrupoles for beam dynamics calculations purposes.


Figure 25: Quadrupole strength profile of Q14. Red curve corresponds to the strength on Runge-Kutta trajectory.

Table 16: SI quadrupole Q14 half segmented model (maximum strength).
Segment# Length [m] Deflection [deg.] Field [T] K [m-2] * S [m-3] *
01 0.0700 0.000 -0.000e+00 -4.090e+00 -0.000e+00

* K=B'/(Bρ), S=B"/(2Bρ)


Figure 26: Quadrupole strength profile of Q20. Red curve corresponds to the strength on Runge-Kutta trajectory.

Table 17: SI quadrupole Q20 half segmented model (maximum strength).
Segment# Length [m] Deflection [deg.] Field [T] K [m-2] * S [m-3] *
01 0.1000 0.000 -0.000e+00 -4.800e+00 -0.000e+00

* K=B'/(Bρ), S=B"/(2Bρ)

Figure 27: Quadrupole strength profile of Q30. Red curve corresponds to the strength on Runge-Kutta trajectory.

Table 18: SI quadrupole Q30 half segmented model (maximum strength).
Segment# Length [m] Deflection [deg.] Field [T] K [m-2] * S [m-3] *
01 0.1500 0.000 -0.000e+00 -4.810e+00 -0.000e+00

* K=B'/(Bρ), S=B"/(2Bρ)

SI Quadrupole Magnet Measurements

A summary of magnet field measurements of SI quadrupoles.

Q14
Summary
         /-------------------------------------------------------------------------------------------------\
         |          IntQuad[T]        |       XCenter[um]    |        YCenter[um]    |    RollError[mrad]  |
         |      Avg ± Std     MaxMin  |   Avg ± Std  MaxMin  |    Avg ± Std  MaxMin  |   Avg ± Std  MaxMin |
/--------|----------------------------|----------------------|-----------------------|---------------------|
| QDA    |  +5.2405 ± 0.0024  0.0074  |  -0.1 ± 5.4   20.3   |   +5.6 ± 4.3   13.4   |  -0.4 ± 0.1   0.2   |
| QDB1   |  +5.2373 ± 0.0030  0.0125  |  +2.0 ± 5.7   24.9   |   +3.5 ± 5.2   24.6   |  -0.3 ± 0.1   0.4   |
| QDB2   |  +5.2338 ± 0.0013  0.0044  |  +0.1 ± 7.3   28.0   |   +3.4 ± 4.2   15.6   |  -0.3 ± 0.1   0.6   |
| QDP1   |  +5.2365 ± 0.0021  0.0070  |  +4.7 ± 5.5   17.8   |   +3.6 ± 3.2   11.4   |  -0.4 ± 0.1   0.2   |
| QDP2   |  +5.2365 ± 0.0012  0.0042  |  -2.1 ± 5.4   15.6   |   +4.5 ± 5.3   17.9   |  -0.4 ± 0.1   0.3   |
\----------------------------------------------------------------------------------------------------------/


Integrated Quadrupole
Figure 28: Integrated quadrupole strengths of Q14 magnets.
Horizontal Magnetic Center
Figure 29: Horizontal magnet center of Q14 magnets.
Vertical Magnetic Center
Figure 30: Vertical magnet center of Q14 magnets.
Roll-Angle Error
Figure 31: Roll angle error of Q14 magnets.


Q20
Summary
          .--------------------------------------------------------------------------------------------------.
          |          IntQuad[T]        |       XCenter[um]     |        YCenter[um]    |    RollError[mrad]  |
          |      Avg ± Std     MaxMin  |   Avg ± Std  MaxMin   |    Avg ± Std  MaxMin  |   Avg ± Std  MaxMin |
. --------|----------------------------|-----------------------|-----------------------|---------------------|
| QFA     |  -9.0805 ± 0.0047  0.0173  |  +8.4 ± 3.0   10.2    |   +6.8 ± 5.6   16.0   |  +0.0 ± 0.1   0.4   |
| Q1      |  -9.0995 ± 0.0071  0.0278  |  +5.7 ± 6.6   30.4    |   +3.8 ± 5.0   22.4   |  +0.1 ± 0.1   0.5   |
| Q2      |  -9.0855 ± 0.0042  0.0160  |  +7.1 ± 5.1   22.0    |   +4.0 ± 5.5   28.5   |  +0.1 ± 0.1   0.4   |
| Q3      |  -9.0883 ± 0.0057  0.0235  |  +6.5 ± 5.9   25.5    |   +4.0 ± 6.6   31.4   |  +0.0 ± 0.1   0.3   |
| Q4      |  -9.0790 ± 0.0059  0.0236  |  +7.8 ± 5.5   26.2    |   +3.5 ± 4.4   20.8   |  +0.1 ± 0.1   0.4   |
.------------------------------------------------------------------------------------------------------------.


Integrated Quadrupole
Figure 32: Integrated quadrupole strengths of Q20 magnets.
Horizontal Magnetic Center
Figure 33: Horizontal magnet center of Q20 magnets.
Vertical Magnetic Center
Figure 34: Vertical magnet center of Q20 magnets.
Roll-Angle Error
Figure 35: Roll angle error of Q20 magnets.


Q30
Summary
          .-----------------------------------------------------------------------------------------------------.
          |          IntQuad[T]        |       XCenter[um]     |       YCenter[um]      |    RollError[mrad]    |
          |      Avg ± Std     MaxMin  |   Avg ± Std   MaxMin  |    Avg ± Std   MaxMin  |   Avg ± Std  MaxMin   |
. --------|----------------------------|-----------------------|------------------------|-----------------------|
| QFB     | -13.6385 ± 0.0050  0.0215  |  +0.6 ± 7.1    28.9   |   -1.8 ± 4.5    18.0   |  -0.3 ± 0.05  0.2     |
| QFP     | -13.6295 ± 0.0038  0.0127  |  -4.2 ± 5.1    18.8   |   -2.8 ± 4.0    13.2   |  -0.2 ± 0.1   0.3     |
.---------------------------------------------------------------------------------------------------------------.  


Integrated Quadrupole
Figure 36: Integrated quadrupole strengths of Q30 magnets.
Horizontal Magnetic Center
Figure 37: Horizontal magnet center of Q30 magnets.
Vertical Magnetic Center
Figure 38: Vertical magnet center of Q30 magnets.
Roll-Angle Error
Figure 39: Roll angle error of Q30 magnets.

SI Quadrupole Magnet Sorting

Q14 Installation Order

Table 19: Storage Ring Quadrupoles Q14 Installation.
QDA
Magnet Name Magnet Serial ID
SI-01M2:MA-QDA Q14-081
SI-05M1:MA-QDA Q14-077
SI-05M2:MA-QDA Q14-028
SI-09M1:MA-QDA Q14-059
SI-09M2:MA-QDA Q14-062
SI-13M1:MA-QDA Q14-058
SI-13M2:MA-QDA Q14-040
SI-17M1:MA-QDA Q14-034
SI-17M2:MA-QDA Q14-068
SI-01M1:MA-QDA Q14-018
QDB1
Magnet Name Magnet Serial ID
SI-02M1:MA-QDB1 Q14-010
SI-02M2:MA-QDB1 Q14-017
SI-04M1:MA-QDB1 Q14-011
SI-04M2:MA-QDB1 Q14-008
SI-06M1:MA-QDB1 Q14-023
SI-06M2:MA-QDB1 Q14-035
SI-08M1:MA-QDB1 Q14-048
SI-08M2:MA-QDB1 Q14-075
SI-10M1:MA-QDB1 Q14-021
SI-10M2:MA-QDB1 Q14-055
SI-12M1:MA-QDB1 Q14-014
SI-12M2:MA-QDB1 Q14-033
SI-14M1:MA-QDB1 Q14-026
SI-14M2:MA-QDB1 Q14-067
SI-16M1:MA-QDB1 Q14-057
SI-16M2:MA-QDB1 Q14-027
SI-18M1:MA-QDB1 Q14-079
SI-18M2:MA-QDB1 Q14-009
SI-20M1:MA-QDB1 Q14-025
SI-20M2:MA-QDB1 Q14-053
QDB2
Magnet Name Magnet Serial ID
SI-02M1:MA-QDB2 Q14-039
SI-02M2:MA-QDB2 Q14-050
SI-04M1:MA-QDB2 Q14-038
SI-04M2:MA-QDB2 Q14-020
SI-06M1:MA-QDB2 Q14-045
SI-06M2:MA-QDB2 Q14-047
SI-08M1:MA-QDB2 Q14-064
SI-08M2:MA-QDB2 Q14-046
SI-10M1:MA-QDB2 Q14-032
SI-10M2:MA-QDB2 Q14-030
SI-12M1:MA-QDB2 Q14-065
SI-12M2:MA-QDB2 Q14-056
SI-14M1:MA-QDB2 Q14-049
SI-14M2:MA-QDB2 Q14-054
SI-16M1:MA-QDB2 Q14-063
SI-16M2:MA-QDB2 Q14-004
SI-18M1:MA-QDB2 Q14-015
SI-18M2:MA-QDB2 Q14-066
SI-20M1:MA-QDB2 Q14-060
SI-20M2:MA-QDB2 Q14-052
QDP1
Magnet Name Magnet Serial ID
SI-03M1:MA-QDP1 Q14-069
SI-03M2:MA-QDP1 Q14-072
SI-07M1:MA-QDP1 Q14-019
SI-07M2:MA-QDP1 Q14-031
SI-11M1:MA-QDP1 Q14-041
SI-11M2:MA-QDP1 Q14-070
SI-15M1:MA-QDP1 Q14-051
SI-15M2:MA-QDP1 Q14-042
SI-19M1:MA-QDP1 Q14-029
SI-19M2:MA-QDP1 Q14-061
QDP2
Magnet Name Magnet Serial ID
SI-03M1:MA-QDP2 Q14-012
SI-03M2:MA-QDP2 Q14-005
SI-07M1:MA-QDP2 Q14-078
SI-07M2:MA-QDP2 Q14-071
SI-11M1:MA-QDP2 Q14-007
SI-11M2:MA-QDP2 Q14-006
SI-15M1:MA-QDP2 Q14-073
SI-15M2:MA-QDP2 Q14-016
SI-19M1:MA-QDP2 Q14-037
SI-19M2:MA-QDP2 Q14-002
Not Used
Magnet Name Magnet Serial ID
--- Q14-044
--- Q14-074
--- Q14-043
--- Q14-013
--- Q14-024
--- Q14-076
--- Q14-080
--- Q14-036


Q20 Installation Order

Table 20: Storage Ring Quadrupoles Q20 Installation.
QFA
Magnet Name Magnet Serial ID
SI-01M2:MA-QFA Q20-076
SI-05M1:MA-QFA Q20-079
SI-05M2:MA-QFA Q20-176
SI-09M1:MA-QFA Q20-074
SI-09M2:MA-QFA Q20-101
SI-13M1:MA-QFA Q20-162
SI-13M2:MA-QFA Q20-155
SI-17M1:MA-QFA Q20-095
SI-17M2:MA-QFA Q20-071
SI-01M1:MA-QFA Q20-049
Q1
Magnet Name Magnet Serial ID
SI-01C1:MA-Q1 Q20-030
SI-01C4:MA-Q1 Q20-132
SI-02C1:MA-Q1 Q20-013
SI-02C4:MA-Q1 Q20-014
SI-03C1:MA-Q1 Q20-027
SI-03C4:MA-Q1 Q20-008
SI-04C1:MA-Q1 Q20-029
SI-04C4:MA-Q1 Q20-023
SI-05C1:MA-Q1 Q20-149
SI-05C4:MA-Q1 Q20-028
SI-06C1:MA-Q1 Q20-036
SI-06C4:MA-Q1 Q20-033
SI-07C1:MA-Q1 Q20-020
SI-07C4:MA-Q1 Q20-015
SI-08C1:MA-Q1 Q20-125
SI-08C4:MA-Q1 Q20-153
SI-09C1:MA-Q1 Q20-025
SI-09C4:MA-Q1 Q20-067
SI-10C1:MA-Q1 Q20-035
SI-10C4:MA-Q1 Q20-141
SI-11C1:MA-Q1 Q20-119
SI-11C4:MA-Q1 Q20-012
SI-12C1:MA-Q1 Q20-111
SI-12C4:MA-Q1 Q20-006
SI-13C1:MA-Q1 Q20-164
SI-13C4:MA-Q1 Q20-024
SI-14C1:MA-Q1 Q20-010
SI-14C4:MA-Q1 Q20-032
SI-15C1:MA-Q1 Q20-011
SI-15C4:MA-Q1 Q20-005
SI-16C1:MA-Q1 Q20-039
SI-16C4:MA-Q1 Q20-109
SI-17C1:MA-Q1 Q20-016
SI-17C4:MA-Q1 Q20-009
SI-18C1:MA-Q1 Q20-026
SI-18C4:MA-Q1 Q20-037
SI-19C1:MA-Q1 Q20-038
SI-19C4:MA-Q1 Q20-017
SI-20C1:MA-Q1 Q20-007
SI-20C4:MA-Q1 Q20-021
Q2
Magnet Name Magnet Serial ID
SI-01C1:MA-Q2 Q20-096
SI-01C4:MA-Q2 Q20-034
SI-02C1:MA-Q2 Q20-092
SI-02C4:MA-Q2 Q20-122
SI-03C1:MA-Q2 Q20-136
SI-03C4:MA-Q2 Q20-174
SI-04C1:MA-Q2 Q20-056
SI-04C4:MA-Q2 Q20-059
SI-05C1:MA-Q2 Q20-128
SI-05C4:MA-Q2 Q20-115
SI-06C1:MA-Q2 Q20-126
SI-06C4:MA-Q2 Q20-158
SI-07C1:MA-Q2 Q20-073
SI-07C4:MA-Q2 Q20-087
SI-08C1:MA-Q2 Q20-137
SI-08C4:MA-Q2 Q20-082
SI-09C1:MA-Q2 Q20-050
SI-09C4:MA-Q2 Q20-117
SI-10C1:MA-Q2 Q20-105
SI-10C4:MA-Q2 Q20-124
SI-11C1:MA-Q2 Q20-120
SI-11C4:MA-Q2 Q20-118
SI-12C1:MA-Q2 Q20-134
SI-12C4:MA-Q2 Q20-135
SI-13C1:MA-Q2 Q20-068
SI-13C4:MA-Q2 Q20-098
SI-14C1:MA-Q2 Q20-072
SI-14C4:MA-Q2 Q20-175
SI-15C1:MA-Q2 Q20-178
SI-15C4:MA-Q2 Q20-104
SI-16C1:MA-Q2 Q20-046
SI-16C4:MA-Q2 Q20-154
SI-17C1:MA-Q2 Q20-167
SI-17C4:MA-Q2 Q20-094
SI-18C1:MA-Q2 Q20-062
SI-18C4:MA-Q2 Q20-102
SI-19C1:MA-Q2 Q20-131
SI-19C4:MA-Q2 Q20-138
SI-20C1:MA-Q2 Q20-065
SI-20C4:MA-Q2 Q20-152
Q3
Magnet Name Magnet Serial ID
SI-01C2:MA-Q3 Q20-066
SI-01C3:MA-Q3 Q20-061
SI-02C2:MA-Q3 Q20-091
SI-02C3:MA-Q3 Q20-004
SI-03C2:MA-Q3 Q20-147
SI-03C3:MA-Q3 Q20-114
SI-04C2:MA-Q3 Q20-112
SI-04C3:MA-Q3 Q20-165
SI-05C2:MA-Q3 Q20-107
SI-05C3:MA-Q3 Q20-019
SI-06C2:MA-Q3 Q20-179
SI-06C3:MA-Q3 Q20-106
SI-07C2:MA-Q3 Q20-148
SI-07C3:MA-Q3 Q20-108
SI-08C2:MA-Q3 Q20-070
SI-08C3:MA-Q3 Q20-159
SI-09C2:MA-Q3 Q20-121
SI-09C3:MA-Q3 Q20-045
SI-10C2:MA-Q3 Q20-042
SI-10C3:MA-Q3 Q20-130
SI-11C2:MA-Q3 Q20-161
SI-11C3:MA-Q3 Q20-075
SI-12C2:MA-Q3 Q20-127
SI-12C3:MA-Q3 Q20-022
SI-13C2:MA-Q3 Q20-145
SI-13C3:MA-Q3 Q20-133
SI-14C2:MA-Q3 Q20-172
SI-14C3:MA-Q3 Q20-129
SI-15C2:MA-Q3 Q20-018
SI-15C3:MA-Q3 Q20-142
SI-16C2:MA-Q3 Q20-139
SI-16C3:MA-Q3 Q20-113
SI-17C2:MA-Q3 Q20-140
SI-17C3:MA-Q3 Q20-170
SI-18C2:MA-Q3 Q20-110
SI-18C3:MA-Q3 Q20-044
SI-19C2:MA-Q3 Q20-086
SI-19C3:MA-Q3 Q20-177
SI-20C2:MA-Q3 Q20-031
SI-20C3:MA-Q3 Q20-064
Q4
Magnet Name Magnet Serial ID
SI-01C2:MA-Q4 Q20-081
SI-01C3:MA-Q4 Q20-097
SI-02C2:MA-Q4 Q20-051
SI-02C3:MA-Q4 Q20-168
SI-03C2:MA-Q4 Q20-166
SI-03C3:MA-Q4 Q20-043
SI-04C2:MA-Q4 Q20-080
SI-04C3:MA-Q4 Q20-047
SI-05C2:MA-Q4 Q20-163
SI-05C3:MA-Q4 Q20-048
SI-06C2:MA-Q4 Q20-103
SI-06C3:MA-Q4 Q20-116
SI-07C2:MA-Q4 Q20-089
SI-07C3:MA-Q4 Q20-077
SI-08C2:MA-Q4 Q20-093
SI-08C3:MA-Q4 Q20-063
SI-09C2:MA-Q4 Q20-100
SI-09C3:MA-Q4 Q20-054
SI-10C2:MA-Q4 Q20-156
SI-10C3:MA-Q4 Q20-169
SI-11C2:MA-Q4 Q20-057
SI-11C3:MA-Q4 Q20-058
SI-12C2:MA-Q4 Q20-090
SI-12C3:MA-Q4 Q20-150
SI-13C2:MA-Q4 Q20-144
SI-13C3:MA-Q4 Q20-085
SI-14C2:MA-Q4 Q20-052
SI-14C3:MA-Q4 Q20-069
SI-15C2:MA-Q4 Q20-123
SI-15C3:MA-Q4 Q20-084
SI-16C2:MA-Q4 Q20-143
SI-16C3:MA-Q4 Q20-171
SI-17C2:MA-Q4 Q20-053
SI-17C3:MA-Q4 Q20-157
SI-18C2:MA-Q4 Q20-078
SI-18C3:MA-Q4 Q20-146
SI-19C2:MA-Q4 Q20-060
SI-19C3:MA-Q4 Q20-160
SI-20C2:MA-Q4 Q20-173
SI-20C3:MA-Q4 Q20-083
Not Used
Magnet Name Magnet Serial ID
--- Q20-041
--- Q20-088
--- Q20-040
--- Q20-055
--- Q20-099


Q30 Installation Order

Table 21: Storage Ring Quadrupoles Q30 Installation.
QFB
Magnet Name Magnet Serial ID
SI-02M1:MA-QFB Q30-016
SI-02M2:MA-QFB Q30-032
SI-04M1:MA-QFB Q30-010
SI-04M2:MA-QFB Q30-019
SI-06M1:MA-QFB Q30-008
SI-06M2:MA-QFB Q30-036
SI-08M1:MA-QFB Q30-011
SI-08M2:MA-QFB Q30-035
SI-10M1:MA-QFB Q30-009
SI-10M2:MA-QFB Q30-020
SI-12M1:MA-QFB Q30-029
SI-12M2:MA-QFB Q30-014
SI-14M1:MA-QFB Q30-013
SI-14M2:MA-QFB Q30-024
SI-16M1:MA-QFB Q30-005
SI-16M2:MA-QFB Q30-021
SI-18M1:MA-QFB Q30-025
SI-18M2:MA-QFB Q30-030
SI-20M1:MA-QFB Q30-023
SI-20M2:MA-QFB Q30-022
QFP
Magnet Name Magnet Serial ID
SI-03M1:MA-QFP Q30-033
SI-03M2:MA-QFP Q30-027
SI-07M1:MA-QFP Q30-017
SI-07M2:MA-QFP Q30-006
SI-11M1:MA-QFP Q30-026
SI-11M2:MA-QFP Q30-034
SI-15M1:MA-QFP Q30-015
SI-15M2:MA-QFP Q30-031
SI-19M1:MA-QFP Q30-007
SI-19M2:MA-QFP Q30-004
Not Used
Magnet Name Magnet Serial ID
--- Q30-018
--- Q30-012
--- Q30-028

Storage Ring Sextupoles, Slow Orbit Correctors and Skew Quadrupoles

Sextupole magnets in Sirius are designed to be multifunctional: apart from providing sextupolar field for chromaticity correction and dynamical aperture optimization, they also provide horizontal and vertical slow dipolar correctors for steering the beam orbit, as well as skew quadrupolar field to correct linear coupling introduced by lattice errors. These functions are implemented as additional excitations coils in the magnets. A sextupole magnet with excitation coils for vertical and/or horizontal dipolar fields does not have coils for skew quadrupolar fields, and vice-versa.

SI Sextupole Magnet Specifications

Main Parameters

Table 22 lists main specifications for the strength of the sextupole magnets.

Table 22: Storage ring sextupole strength specifications.
Number of magnets 280
Magnetic length 0.15 m
Bore diameter 28 mm
Maximum sextupolar strength 240 m-3
Maximum integrated sextupolar strength, ∫S.ds 36 m-2
Maximum integrated sextupolar field gradient, ∫B"/2.ds 360.2 T·m-1
Maximum sextupole field gradient 2402 T·m-2
Maximum sextupolar field at pole tip 0.47 T

Table 23 lists main specifications for the orbit-corrector in the sextupole magnets.

Table 23: Storage ring orbit corrector specifications.
Coils CH CV
Number of correctors 120 160
Sextupole families with correctors SDA0, SFB0, SFP0, SDx1, SFx2 SDA0, SFB0, SFP0, SDx1, SDx3, SFx2(C3)
Maximum kick angle 390 405 μrad
Maximum integrated dipolar field 0.00390 0.00405 T·m
Maximum dipolar field 0.0260 0.0270 T

Table 24 lists main specifications for the skew quadrupoles in the sextupole magnets.

Table 24: Storage ring skew quadrupole specifications.
Coil QS
Number 80 (+ 10 QS in fast corrector)
Sextupole families with skew quadrupoles SFA0, SDB0, SDP0, SDx2(C1), SDx3(C3)
Maximum skew quadrupolar strength 1 0.0667 m-2
Maximum integrated skew quadrupolar strength 0.0100 m-1
Maximum integrated skew quadrupolar gradient 0.100 T

1 Maximum value needed to correct linear coupling introduced by magnet alignment errors. Coupling introduced by IDs will be corrected using local skew quadrupoles.

Electric parameters

Table 25: Storage ring sextupole electric parameters
S15 units
Main coil current 158.48 A
Main coil number of turns 11.25
Maximum CH coil current 10.00 A
CH coil number of turns 14 / 28
Maximum CV coil current 10.00 A
CV coil number of turns 28
QS coil current1 4.30 A
QS coil number of turns 28
Stored magnetic energy 61.57 J
Magnet inductance 4.90 mH

1 Value required to reach the specified skew quadrupolar strength.

Multipole Errors

Multipole errors from sextupolar excitation

Table 26: Storage ring sextupole multipole errors. Contribution of multipolar components relative to main sextupolar field at x = 12 mm. Standard deviation for random multipole errors; simulations assume Gaussian distribution truncated at ±2σ.
Multipole error Systematic
(normal)
Random
Normal Skew
B3/B2 (octupole) 7.0×10-4 5.0×10-4
B4/B2 (decapole) -7.0×10-5 5.0×10-4 5.0×10-4
B5/B2 (12-pole) 4.0×10-4 5.0×10-5
B6/B2 (14-pole) -1.4×10-4 2.0×10-4 5.0×10-5
B8/B2 (18-pole) -2.4×10-3
B14/B2 (30-pole) +1.4×10-3

1 These spec values have been updated in 2018-04-23 after rotating coil measurements. They have been validated by beam dynamics calculations.

Multipole errors from slow horizontal corrector excitation

Table 27: Storage ring horizontal corrector magnet multipole errors. Contribution of multipolar components relative to main dipolar field at x = 12 mm. Standard deviation for random multipole errors; simulations assume Gaussian distribution truncated at ±2σ.
Multipole error Systematic
(normal)
Random
Normal Skew
B4/B0 (decapole) +3.1×10-1
B6/B0 (14-pole) +3.3×10-2
B8/B0 (18-pole) -4.8×10-2
B10/B0 (22-pole) +1.4×10-2

Multipole errors from slow vertical corrector excitation

Table 28: Storage ring vertical corrector magnet multipole errors. Contribution of multipolar components relative to main dipolar field at x = 12 mm. Standard deviation for random multipole errors; simulations assume Gaussian distribution truncated at ±2σ.
Multipole error Systematic
(skew)
Random
Normal Skew
B4/B0 (decapole) -2.9×10-1
B6/B0 (14-pole) -3.5×10-3
B8/B0 (18-pole) +5.5×10-2
B10/B0 (22-pole) -1.1×10-2

Multipole errors from skew quadrupole excitation

Table 29: Storage ring skew quadrupoles multipole errors. Contribution of multipolar components relative to main quadrupolar field at x = 12 mm. Standard deviation for random multipole errors; simulations assume Gaussian distribution truncated at ±2σ.
Multipole error Systematic
(skew)
Random
Normal Skew
B3/B1 (octupole) -5.8×10-1
B7/B1 (16-pole) +2.7×10-3
B9/B1 (20-pole) +8.0×10-3
B13/B1 (28-pole) +2.4×10-3


Alignment and Excitation Errors

Table 30: Maximum absolute value of random alignment and excitation errors for the Storage Ring Sextupoles. The errors are generated with a Gaussian distribution truncated at ±1σ.
Sextupoles
Transverse position, , 40 μm
Rotation around longitudinal axis 0.30 mrad
Strength error (static or low frequency) 0.05  %

SI Sextupole Magnet 3D Models

Figure 40: 3D drawing of the sextupole (with dipolar field coils) quadrupole model.
Figure 41: Field of the quadrupole (with dipolar field coils) half model.
Fieldmap Analysis

A 3D model of multifunctional sextupole magnet has been analyzed and approved. Fieldmap analysis for each function has been performed with maximum excitation currents, when residual multipoles are expected to be worse. For the analysis of horizontal and vertical orbit corrector fields, as well as for the skew quadrupole corrector field, the sextupolar function was also excited in order to guarantee fast convergence of the magnetic solution.

Sextupolar function

The latest analyzed fieldmap can be accessed here. A summary of the analysis can be found in analysis.txt at this folder.

Sextupolar+Horizontal functions

The latest analyzed fieldmap can be accessed here. A summary of the analysis can be found in analysis.txt at this folder.

Sextupolar+Vertical functions

The latest analyzed fieldmap can be accessed here. A summary of the analysis can be found in analysis.txt at this folder.

Sextupolar+Skew functions

The latest analyzed fieldmap can be accessed here. A summary of the analysis can be found in analysis.txt at this folder.

Segmented Model

Currently the hard-edge approximation is being used to model sextupoles for beam dynamics calculations purposes.


Figure 42: Strength profile of SI sextupole model

Table 31: SI sextupole half segmented model (maximum strength).
Segment# Length [m] Deflection [deg.] Field [T] K [m-2] * S [m-3] *
01 0.0750 0.000 -0.000e+00 +0.000e+00 +2.470e+02

* K=B'/(Bρ), S=B"/(2Bρ)

SI Sextupole Magnet Measurements

A summary of magnet field measurements of SI S15 sextupoles.

Summary
       /-------------------------------------------------------------------------------------------\
       |      IntSext[(T/m)/A]     |     XCenter[um]   |    YCenter[um]    |    RollError[mrad]    |
       |    Avg ± Std     MaxMin   | Avg ± Std  MaxMin | Avg ± Std  MaxMin |   Avg ± Std    MaxMin |
/------|---------------------------|-------------------|-------------------|-----------------------|
| SDA0 | -2.2551 ± 0.00060 0.00166 | +11.2 ± 7.5  27.8 | +27.2 ± 6.3  21.0 | -0.022 ± 0.051  0.157 |
| SFA0 | -2.2555 ± 0.00038 0.00128 | +15.3 ± 5.0  16.6 | +22.6 ± 4.1  12.5 | +0.173 ± 0.076  0.266 |
| SDB0 | -2.2514 ± 0.00065 0.00226 | +14.5 ± 6.0  26.1 | +22.7 ± 4.6  18.3 | +0.165 ± 0.037  0.145 |
| SFB0 | -2.2488 ± 0.00079 0.00302 | +20.3 ± 7.8  27.7 | +27.8 ± 4.9  24.9 | +0.059 ± 0.058  0.239 |
| SDP0 | -2.2525 ± 0.00014 0.00046 | +12.1 ± 4.9  15.1 | +25.2 ± 4.6  13.7 | +0.074 ± 0.032  0.096 |
| SFP0 | -2.2543 ± 0.00033 0.00120 | +16.1 ± 6.9  24.1 | +23.6 ± 5.6  17.9 | +0.160 ± 0.050  0.193 |
| SDA1 | -2.2467 ± 0.00033 0.00111 | +10.2 ± 6.2  21.1 | +25.6 ± 4.8  14.9 | +0.175 ± 0.022  0.081 |
| SFA1 | -2.2332 ± 0.00035 0.00126 | +11.9 ± 2.9  10.6 | +23.0 ± 4.3  13.8 | +0.116 ± 0.023  0.069 |
| SDB1 | -2.2545 ± 0.00053 0.00181 | +11.3 ± 5.3  20.4 | +26.0 ± 4.3  14.4 | +0.021 ± 0.038  0.136 |
| SFB1 | -2.2003 ± 0.00105 0.00449 | +18.6 ± 5.2  17.9 | +25.5 ± 3.6  14.2 | +0.008 ± 0.080  0.325 |
| SDP1 | -2.2550 ± 0.00042 0.00125 | +13.7 ± 6.3  20.3 | +23.7 ± 5.5  17.0 | +0.276 ± 0.035  0.108 |
| SFP1 | -2.2030 ± 0.00029 0.00102 | +12.6 ± 3.8  12.7 | +25.9 ± 3.5  13.4 | +0.051 ± 0.044  0.124 |
| SDA2 | -2.2584 ± 0.00113 0.00301 | +11.6 ± 5.2  17.6 | +24.0 ± 3.9  12.2 | +0.091 ± 0.069  0.254 |
| SFA2 | -2.2481 ± 0.00044 0.00137 |  +9.7 ± 6.5  23.5 | +25.1 ± 3.5  11.8 | +0.068 ± 0.027  0.090 |
| SDB2 | -2.2532 ± 0.00100 0.00498 | +13.4 ± 5.4  25.0 | +24.4 ± 4.1  17.1 | +0.235 ± 0.110  0.544 |
| SFB2 | -2.2324 ± 0.00079 0.00306 | +15.5 ± 7.1  25.8 | +27.8 ± 3.9  14.4 | -0.081 ± 0.066  0.268 |
| SDP2 | -2.2523 ± 0.00032 0.00115 | +19.7 ± 6.1  16.8 | +28.2 ± 4.3  16.2 | +0.086 ± 0.042  0.132 |
| SFP2 | -2.2306 ± 0.00048 0.00169 | +14.0 ± 4.4  14.6 | +25.8 ± 2.8   7.8 | -0.011 ± 0.030  0.100 |
| SDA3 | -2.2494 ± 0.00064 0.00202 | +16.3 ± 2.9   9.1 | +25.2 ± 3.1  10.3 | +0.233 ± 0.059  0.217 |
| SDB3 | -2.2446 ± 0.00060 0.00199 | +14.6 ± 6.4  23.1 | +24.7 ± 4.1  15.0 | +0.220 ± 0.052  0.231 |
| SDP3 | -2.2484 ± 0.00038 0.00134 | +11.3 ± 5.2  18.0 | +22.0 ± 2.8  11.2 | +0.215 ± 0.034  0.094 |
\--------------------------------------------------------------------------------------------------/


Integrated Sextupole
Figure 43: Integrated sextupole strengths of S15 magnets.
Horizontal Magnetic Center
Figure 44: Horizontal magnet center of S15 magnets.
Vertical Magnetic Center
Figure 45: Vertical magnet center of S15 magnets.
Roll-Angle Error
Figure 46: Roll angle error of S15 magnets.

SI Sextupole Magnet Sorting

Table 32: Storage Ring Sextupoles Installation.
SDA0
Magnet Name Magnet Serial ID
SI-01M2:MA-SDA0 S15-004
SI-05M1:MA-SDA0 S15-007
SI-05M2:MA-SDA0 S15-270
SI-09M1:MA-SDA0 S15-240
SI-09M2:MA-SDA0 S15-283
SI-13M1:MA-SDA0 S15-122
SI-13M2:MA-SDA0 S15-184
SI-17M1:MA-SDA0 S15-273
SI-17M2:MA-SDA0 S15-118
SI-01M1:MA-SDA0 S15-261
SFA0
Magnet Name Magnet Serial ID
SI-01M2:MA-SFA0 S15-278
SI-05M1:MA-SFA0 S15-246
SI-05M2:MA-SFA0 S15-276
SI-09M1:MA-SFA0 S15-009
SI-09M2:MA-SFA0 S15-015
SI-13M1:MA-SFA0 S15-279
SI-13M2:MA-SFA0 S15-033
SI-17M1:MA-SFA0 S15-016
SI-17M2:MA-SFA0 S15-010
SI-01M1:MA-SFA0 S15-172
SDB0
Magnet Name Magnet Serial ID
SI-02M1:MA-SDB0 S15-159
SI-02M2:MA-SDB0 S15-119
SI-04M1:MA-SDB0 S15-132
SI-04M2:MA-SDB0 S15-101
SI-06M1:MA-SDB0 S15-026
SI-06M2:MA-SDB0 S15-085
SI-08M1:MA-SDB0 S15-259
SI-08M2:MA-SDB0 S15-264
SI-10M1:MA-SDB0 S15-154
SI-10M2:MA-SDB0 S15-131
SI-12M1:MA-SDB0 S15-241
SI-12M2:MA-SDB0 S15-108
SI-14M1:MA-SDB0 S15-086
SI-14M2:MA-SDB0 S15-114
SI-16M1:MA-SDB0 S15-213
SI-16M2:MA-SDB0 S15-106
SI-18M1:MA-SDB0 S15-157
SI-18M2:MA-SDB0 S15-023
SI-20M1:MA-SDB0 S15-045
SI-20M2:MA-SDB0 S15-239
SFB0
Magnet Name Magnet Serial ID
SI-02M1:MA-SFB0 S15-076
SI-02M2:MA-SFB0 S15-133
SI-04M1:MA-SFB0 S15-152
SI-04M2:MA-SFB0 S15-082
SI-06M1:MA-SFB0 S15-074
SI-06M2:MA-SFB0 S15-163
SI-08M1:MA-SFB0 S15-103
SI-08M2:MA-SFB0 S15-075
SI-10M1:MA-SFB0 S15-072
SI-10M2:MA-SFB0 S15-208
SI-12M1:MA-SFB0 S15-039
SI-12M2:MA-SFB0 S15-048
SI-14M1:MA-SFB0 S15-070
SI-14M2:MA-SFB0 S15-053
SI-16M1:MA-SFB0 S15-038
SI-16M2:MA-SFB0 S15-151
SI-18M1:MA-SFB0 S15-077
SI-18M2:MA-SFB0 S15-013
SI-20M1:MA-SFB0 S15-056
SI-20M2:MA-SFB0 S15-073
SDP0
Magnet Name Magnet Serial ID
SI-03M1:MA-SDP0 S15-041
SI-03M2:MA-SDP0 S15-110
SI-07M1:MA-SDP0 S15-113
SI-07M2:MA-SDP0 S15-269
SI-11M1:MA-SDP0 S15-230
SI-11M2:MA-SDP0 S15-147
SI-15M1:MA-SDP0 S15-143
SI-15M2:MA-SDP0 S15-193
SI-19M1:MA-SDP0 S15-232
SI-19M2:MA-SDP0 S15-187
SFP0
Magnet Name Magnet Serial ID
SI-03M1:MA-SFP0 S15-249
SI-03M2:MA-SFP0 S15-221
SI-07M1:MA-SFP0 S15-238
SI-07M2:MA-SFP0 S15-044
SI-11M1:MA-SFP0 S15-274
SI-11M2:MA-SFP0 S15-135
SI-15M1:MA-SFP0 S15-043
SI-15M2:MA-SFP0 S15-040
SI-19M1:MA-SFP0 S15-258
SI-19M2:MA-SFP0 S15-093
SDA1
Magnet Name Magnet Serial ID
SI-01C1:MA-SDA1 S15-138
SI-04C4:MA-SDA1 S15-120
SI-05C1:MA-SDA1 S15-195
SI-08C4:MA-SDA1 S15-212
SI-09C1:MA-SDA1 S15-207
SI-12C4:MA-SDA1 S15-164
SI-13C1:MA-SDA1 S15-100
SI-16C4:MA-SDA1 S15-141
SI-17C1:MA-SDA1 S15-223
SI-20C4:MA-SDA1 S15-112
SFA1
Magnet Name Magnet Serial ID
SI-01C1:MA-SFA1 S15-142
SI-04C4:MA-SFA1 S15-219
SI-05C1:MA-SFA1 S15-102
SI-08C4:MA-SFA1 S15-286
SI-09C1:MA-SFA1 S15-236
SI-12C4:MA-SFA1 S15-266
SI-13C1:MA-SFA1 S15-265
SI-16C4:MA-SFA1 S15-272
SI-17C1:MA-SFA1 S15-098
SI-20C4:MA-SFA1 S15-105
SDB1
Magnet Name Magnet Serial ID
SI-01C4:MA-SDB1 S15-168
SI-02C1:MA-SDB1 S15-181
SI-03C4:MA-SDB1 S15-174
SI-04C1:MA-SDB1 S15-128
SI-05C4:MA-SDB1 S15-146
SI-06C1:MA-SDB1 S15-268
SI-07C4:MA-SDB1 S15-139
SI-08C1:MA-SDB1 S15-202
SI-09C4:MA-SDB1 S15-244
SI-10C1:MA-SDB1 S15-242
SI-11C4:MA-SDB1 S15-149
SI-12C1:MA-SDB1 S15-124
SI-13C4:MA-SDB1 S15-107
SI-14C1:MA-SDB1 S15-189
SI-15C4:MA-SDB1 S15-188
SI-16C1:MA-SDB1 S15-177
SI-17C4:MA-SDB1 S15-186
SI-18C1:MA-SDB1 S15-126
SI-19C4:MA-SDB1 S15-123
SI-20C1:MA-SDB1 S15-170
SFB1
Magnet Name Magnet Serial ID
SI-01C4:MA-SFB1 S15-104
SI-02C1:MA-SFB1 S15-080
SI-03C4:MA-SFB1 S15-061
SI-04C1:MA-SFB1 S15-067
SI-05C4:MA-SFB1 S15-068
SI-06C1:MA-SFB1 S15-034
SI-07C4:MA-SFB1 S15-060
SI-08C1:MA-SFB1 S15-081
SI-09C4:MA-SFB1 S15-156
SI-10C1:MA-SFB1 S15-257
SI-11C4:MA-SFB1 S15-234
SI-12C1:MA-SFB1 S15-182
SI-13C4:MA-SFB1 S15-233
SI-14C1:MA-SFB1 S15-169
SI-15C4:MA-SFB1 S15-059
SI-16C1:MA-SFB1 S15-275
SI-17C4:MA-SFB1 S15-153
SI-18C1:MA-SFB1 S15-052
SI-19C4:MA-SFB1 S15-071
SI-20C1:MA-SFB1 S15-065
SDP1
Magnet Name Magnet Serial ID
SI-02C4:MA-SDP1 S15-092
SI-03C1:MA-SDP1 S15-017
SI-06C4:MA-SDP1 S15-175
SI-07C1:MA-SDP1 S15-271
SI-10C4:MA-SDP1 S15-020
SI-11C1:MA-SDP1 S15-050
SI-14C4:MA-SDP1 S15-109
SI-15C1:MA-SDP1 S15-012
SI-18C4:MA-SDP1 S15-155
SI-19C1:MA-SDP1 S15-227
SFP1
Magnet Name Magnet Serial ID
SI-02C4:MA-SFP1 S15-063
SI-03C1:MA-SFP1 S15-260
SI-06C4:MA-SFP1 S15-180
SI-07C1:MA-SFP1 S15-176
SI-10C4:MA-SFP1 S15-250
SI-11C1:MA-SFP1 S15-209
SI-14C4:MA-SFP1 S15-165
SI-15C1:MA-SFP1 S15-253
SI-18C4:MA-SFP1 S15-229
SI-19C1:MA-SFP1 S15-251
SDA2
Magnet Name Magnet Serial ID
SI-01C1:MA-SDA2 S15-248
SI-04C4:MA-SDA2 S15-277
SI-05C1:MA-SDA2 S15-245
SI-08C4:MA-SDA2 S15-029
SI-09C1:MA-SDA2 S15-256
SI-12C4:MA-SDA2 S15-167
SI-13C1:MA-SDA2 S15-031
SI-16C4:MA-SDA2 S15-263
SI-17C1:MA-SDA2 S15-166
SI-20C4:MA-SDA2 S15-032
SFA2
Magnet Name Magnet Serial ID
SI-01C2:MA-SFA2 S15-282
SI-04C3:MA-SFA2 S15-117
SI-05C2:MA-SFA2 S15-021
SI-08C3:MA-SFA2 S15-145
SI-09C2:MA-SFA2 S15-220
SI-12C3:MA-SFA2 S15-243
SI-13C2:MA-SFA2 S15-171
SI-16C3:MA-SFA2 S15-280
SI-17C2:MA-SFA2 S15-281
SI-20C3:MA-SFA2 S15-005
SDB2
Magnet Name Magnet Serial ID
SI-01C4:MA-SDB2 S15-197
SI-02C1:MA-SDB2 S15-247
SI-03C4:MA-SDB2 S15-218
SI-04C1:MA-SDB2 S15-099
SI-05C4:MA-SDB2 S15-211
SI-06C1:MA-SDB2 S15-006
SI-07C4:MA-SDB2 S15-235
SI-08C1:MA-SDB2 S15-130
SI-09C4:MA-SDB2 S15-226
SI-10C1:MA-SDB2 S15-254
SI-11C4:MA-SDB2 S15-162
SI-12C1:MA-SDB2 S15-206
SI-13C4:MA-SDB2 S15-096
SI-14C1:MA-SDB2 S15-224
SI-15C4:MA-SDB2 S15-140
SI-16C1:MA-SDB2 S15-225
SI-17C4:MA-SDB2 S15-129
SI-18C1:MA-SDB2 S15-027
SI-19C4:MA-SDB2 S15-222
SI-20C1:MA-SDB2 S15-203
SFB2
Magnet Name Magnet Serial ID
SI-01C3:MA-SFB2 S15-121
SI-02C2:MA-SFB2 S15-190
SI-03C3:MA-SFB2 S15-192
SI-04C2:MA-SFB2 S15-087
SI-05C3:MA-SFB2 S15-210
SI-06C2:MA-SFB2 S15-231
SI-07C3:MA-SFB2 S15-158
SI-08C2:MA-SFB2 S15-115
SI-09C3:MA-SFB2 S15-008
SI-10C2:MA-SFB2 S15-160
SI-11C3:MA-SFB2 S15-019
SI-12C2:MA-SFB2 S15-267
SI-13C3:MA-SFB2 S15-078
SI-14C2:MA-SFB2 S15-030
SI-15C3:MA-SFB2 S15-090
SI-16C2:MA-SFB2 S15-116
SI-17C3:MA-SFB2 S15-018
SI-18C2:MA-SFB2 S15-097
SI-19C3:MA-SFB2 S15-179
SI-20C2:MA-SFB2 S15-185
SDP2
Magnet Name Magnet Serial ID
SI-02C4:MA-SDP2 S15-252
SI-03C1:MA-SDP2 S15-199
SI-06C4:MA-SDP2 S15-088
SI-07C1:MA-SDP2 S15-024
SI-10C4:MA-SDP2 S15-079
SI-11C1:MA-SDP2 S15-191
SI-14C4:MA-SDP2 S15-025
SI-15C1:MA-SDP2 S15-014
SI-18C4:MA-SDP2 S15-161
SI-19C1:MA-SDP2 S15-028
SFP2
Magnet Name Magnet Serial ID
SI-02C3:MA-SFP2 S15-062
SI-03C2:MA-SFP2 S15-049
SI-06C3:MA-SFP2 S15-194
SI-07C2:MA-SFP2 S15-064
SI-10C3:MA-SFP2 S15-237
SI-11C2:MA-SFP2 S15-127
SI-14C3:MA-SFP2 S15-057
SI-15C2:MA-SFP2 S15-173
SI-18C3:MA-SFP2 S15-089
SI-19C2:MA-SFP2 S15-054
SDA3
Magnet Name Magnet Serial ID
SI-01C2:MA-SDA3 S15-217
SI-04C3:MA-SDA3 S15-215
SI-05C2:MA-SDA3 S15-035
SI-08C3:MA-SDA3 S15-144
SI-09C2:MA-SDA3 S15-216
SI-12C3:MA-SDA3 S15-214
SI-13C2:MA-SDA3 S15-204
SI-16C3:MA-SDA3 S15-036
SI-17C2:MA-SDA3 S15-051
SI-20C3:MA-SDA3 S15-022
SDB3
Magnet Name Magnet Serial ID
SI-01C3:MA-SDB3 S15-084
SI-02C2:MA-SDB3 S15-111
SI-03C3:MA-SDB3 S15-228
SI-04C2:MA-SDB3 S15-150
SI-05C3:MA-SDB3 S15-198
SI-06C2:MA-SDB3 S15-201
SI-07C3:MA-SDB3 S15-196
SI-08C2:MA-SDB3 S15-125
SI-09C3:MA-SDB3 S15-183
SI-10C2:MA-SDB3 S15-205
SI-11C3:MA-SDB3 S15-047
SI-12C2:MA-SDB3 S15-200
SI-13C3:MA-SDB3 S15-037
SI-14C2:MA-SDB3 S15-148
SI-15C3:MA-SDB3 S15-058
SI-16C2:MA-SDB3 S15-178
SI-17C3:MA-SDB3 S15-255
SI-18C2:MA-SDB3 S15-134
SI-19C3:MA-SDB3 S15-083
SI-20C2:MA-SDB3 S15-046
SDP3
Magnet Name Magnet Serial ID
SI-02C3:MA-SDP3 S15-042
SI-03C2:MA-SDP3 S15-095
SI-06C3:MA-SDP3 S15-055
SI-07C2:MA-SDP3 S15-094
SI-10C3:MA-SDP3 S15-011
SI-11C2:MA-SDP3 S15-262
SI-14C3:MA-SDP3 S15-136
SI-15C2:MA-SDP3 S15-284
SI-18C3:MA-SDP3 S15-137
SI-19C2:MA-SDP3 S15-285
Not Used
Magnet Name Magnet Serial ID
--- S15-091

Storage Ring Vertical Corrector Magnets

Apart from slow horizontal and vertical slow orbit correctors implemented as additional coils in sextupole magnets, there will be 20 vertical corrector magnets located in C2 dispersion sections. These magnets will be identical to the ones used in the Booster.

Storage Ring Fast Orbit Correctors

Sirius storage ring is planned to have 80 horizontal and 80 vertical fast orbit correctors, as well as 10 skew quadrupole correctors. There will be two types of fast correctors: FC1 magnets with iron poles resembling skew quadrupoles, where horizontal, vertical and skew correctors are implemented as independent coils, and FC2 magnets, which are CF1 magnets rotated 45 degrees with no skew corrector coils. FC2 magnets are installed in odd-numbered C2 sectors to allow for synchrotron light of B2 dipoles to go to diagnostics beamlines. Fast correctors will sit on top of stainless steel vacuum chambers coated with a thin copper inner layer.

SI Fast Correctors Specifications

Main Parameters

Table 33: Storage Ring fast orbit correctors.
Horizontal Vertical Skew
Number of fast correctors 80 80 10 1
Maximum fast corrector strength 30 μrad 30 μrad 0.1 T 2

1 located at even C2 sectors.

2 based on a 2.6%(2.3%) coupling value when one skew magnet is turned on in a straight high(low)-beta straight section.

Multipole Errors

The impact on the beam dynamics of residual multipole errors for the fast corrector magnets has been analyzed from fieldmaps of current models. The impact is very small and the current magnet models have been accepted. Magnetic measurements for prototypes are yet to be taken and analyzed.

SI Fast Correctors Magnet 3D Models

Figure 47: 3D drawing of the fast corrector model.
Figure 48: Field of the fast corrector model.
Fieldmap Analysis

A 3D model of multifunctional sextupole magnet has been analyzed and approved. Fieldmap analysis for each function has been performed with maximum excitation currents, when residual multipoles are expected to be worse. For the analysis of horizontal and vertical orbit corrector fields, as well as for the skew quadrupole corrector field, the sextupolar function was also excited in order to guarantee fast convergence of the magnetic solution.

FC1 Horizontal correction function

A summary of the analysis can be found in analysis.txt at this folder.

FC1 Vertical correction function

A summary of the analysis can be found in analysis.txt at this folder.

FC1 Skew quadrupole function

A summary of the analysis can be found in analysis.txt at this folder.

FC2 Horizontal correction function

A summary of the analysis can be found in analysis.txt at this folder.

FC2 Vertical correction function

A summary of the analysis can be found in analysis.txt at this folder.

Segmented Model

A hardedge model is being used for fast correctors.

SI Fast Correctors Magnet Measurements

Not available yet.

Storage Ring Magnet Families

The storage ring magnets are grouped into families. The tables below list the storage ring families with their individual magnets.

Storage Ring Dipole Families

Table 34: Storage Ring Dipole Families (including transverse gradient variation with QB1B2)
SI-Fam:PS-B1B2-1 SI-Fam:PS-B1B2-2 SI-Fam:MA-QB1B2
1 SI-01C1:MA-B1 SI-01C1:MA-B1 SI-01C1:MA-B1
2 SI-01C2:MA-B2 SI-01C2:MA-B2 SI-01C2:MA-B2
3 SI-01C3:MA-B2 SI-01C3:MA-B2 SI-01C3:MA-B2
4 SI-01C4:MA-B1 SI-01C4:MA-B1 SI-01C4:MA-B1
5 SI-02C1:MA-B1 SI-02C1:MA-B1 SI-02C1:MA-B1
6 SI-02C2:MA-B2 SI-02C2:MA-B2 SI-02C2:MA-B2
7 SI-02C3:MA-B2 SI-02C3:MA-B2 SI-02C3:MA-B2
8 SI-02C4:MA-B1 SI-02C4:MA-B1 SI-02C4:MA-B1
9 SI-03C1:MA-B1 SI-03C1:MA-B1 SI-03C1:MA-B1
10 SI-03C2:MA-B2 SI-03C2:MA-B2 SI-03C2:MA-B2
11 SI-03C3:MA-B2 SI-03C3:MA-B2 SI-03C3:MA-B2
12 SI-03C4:MA-B1 SI-03C4:MA-B1 SI-03C4:MA-B1
13 SI-04C1:MA-B1 SI-04C1:MA-B1 SI-04C1:MA-B1
14 SI-04C2:MA-B2 SI-04C2:MA-B2 SI-04C2:MA-B2
15 SI-04C3:MA-B2 SI-04C3:MA-B2 SI-04C3:MA-B2
16 SI-04C4:MA-B1 SI-04C4:MA-B1 SI-04C4:MA-B1
17 SI-05C1:MA-B1 SI-05C1:MA-B1 SI-05C1:MA-B1
18 SI-05C2:MA-B2 SI-05C2:MA-B2 SI-05C2:MA-B2
19 SI-05C3:MA-B2 SI-05C3:MA-B2 SI-05C3:MA-B2
20 SI-05C4:MA-B1 SI-05C4:MA-B1 SI-05C4:MA-B1
21 SI-06C1:MA-B1 SI-06C1:MA-B1 SI-06C1:MA-B1
22 SI-06C2:MA-B2 SI-06C2:MA-B2 SI-06C2:MA-B2
23 SI-06C3:MA-B2 SI-06C3:MA-B2 SI-06C3:MA-B2
24 SI-06C4:MA-B1 SI-06C4:MA-B1 SI-06C4:MA-B1
25 SI-07C1:MA-B1 SI-07C1:MA-B1 SI-07C1:MA-B1
26 SI-07C2:MA-B2 SI-07C2:MA-B2 SI-07C2:MA-B2
27 SI-07C3:MA-B2 SI-07C3:MA-B2 SI-07C3:MA-B2
28 SI-07C4:MA-B1 SI-07C4:MA-B1 SI-07C4:MA-B1
29 SI-08C1:MA-B1 SI-08C1:MA-B1 SI-08C1:MA-B1
30 SI-08C2:MA-B2 SI-08C2:MA-B2 SI-08C2:MA-B2
31 SI-08C3:MA-B2 SI-08C3:MA-B2 SI-08C3:MA-B2
32 SI-08C4:MA-B1 SI-08C4:MA-B1 SI-08C4:MA-B1
33 SI-09C1:MA-B1 SI-09C1:MA-B1 SI-09C1:MA-B1
34 SI-09C2:MA-B2 SI-09C2:MA-B2 SI-09C2:MA-B2
35 SI-09C3:MA-B2 SI-09C3:MA-B2 SI-09C3:MA-B2
36 SI-09C4:MA-B1 SI-09C4:MA-B1 SI-09C4:MA-B1
37 SI-10C1:MA-B1 SI-10C1:MA-B1 SI-10C1:MA-B1
38 SI-10C2:MA-B2 SI-10C2:MA-B2 SI-10C2:MA-B2
39 SI-10C3:MA-B2 SI-10C3:MA-B2 SI-10C3:MA-B2
40 SI-10C4:MA-B1 SI-10C4:MA-B1 SI-10C4:MA-B1
41 SI-11C1:MA-B1 SI-11C1:MA-B1 SI-11C1:MA-B1
42 SI-11C2:MA-B2 SI-11C2:MA-B2 SI-11C2:MA-B2
43 SI-11C3:MA-B2 SI-11C3:MA-B2 SI-11C3:MA-B2
44 SI-11C4:MA-B1 SI-11C4:MA-B1 SI-11C4:MA-B1
45 SI-12C1:MA-B1 SI-12C1:MA-B1 SI-12C1:MA-B1
46 SI-12C2:MA-B2 SI-12C2:MA-B2 SI-12C2:MA-B2
47 SI-12C3:MA-B2 SI-12C3:MA-B2 SI-12C3:MA-B2
48 SI-12C4:MA-B1 SI-12C4:MA-B1 SI-12C4:MA-B1
49 SI-13C1:MA-B1 SI-13C1:MA-B1 SI-13C1:MA-B1
50 SI-13C2:MA-B2 SI-13C2:MA-B2 SI-13C2:MA-B2
51 SI-13C3:MA-B2 SI-13C3:MA-B2 SI-13C3:MA-B2
52 SI-13C4:MA-B1 SI-13C4:MA-B1 SI-13C4:MA-B1
53 SI-14C1:MA-B1 SI-14C1:MA-B1 SI-14C1:MA-B1
54 SI-14C2:MA-B2 SI-14C2:MA-B2 SI-14C2:MA-B2
55 SI-14C3:MA-B2 SI-14C3:MA-B2 SI-14C3:MA-B2
56 SI-14C4:MA-B1 SI-14C4:MA-B1 SI-14C4:MA-B1
57 SI-15C1:MA-B1 SI-15C1:MA-B1 SI-15C1:MA-B1
58 SI-15C2:MA-B2 SI-15C2:MA-B2 SI-15C2:MA-B2
59 SI-15C3:MA-B2 SI-15C3:MA-B2 SI-15C3:MA-B2
60 SI-15C4:MA-B1 SI-15C4:MA-B1 SI-15C4:MA-B1
61 SI-16C1:MA-B1 SI-16C1:MA-B1 SI-16C1:MA-B1
62 SI-16C2:MA-B2 SI-16C2:MA-B2 SI-16C2:MA-B2
63 SI-16C3:MA-B2 SI-16C3:MA-B2 SI-16C3:MA-B2
64 SI-16C4:MA-B1 SI-16C4:MA-B1 SI-16C4:MA-B1
65 SI-17C1:MA-B1 SI-17C1:MA-B1 SI-17C1:MA-B1
66 SI-17C2:MA-B2 SI-17C2:MA-B2 SI-17C2:MA-B2
67 SI-17C3:MA-B2 SI-17C3:MA-B2 SI-17C3:MA-B2
68 SI-17C4:MA-B1 SI-17C4:MA-B1 SI-17C4:MA-B1
69 SI-18C1:MA-B1 SI-18C1:MA-B1 SI-18C1:MA-B1
70 SI-18C2:MA-B2 SI-18C2:MA-B2 SI-18C2:MA-B2
71 SI-18C3:MA-B2 SI-18C3:MA-B2 SI-18C3:MA-B2
72 SI-18C4:MA-B1 SI-18C4:MA-B1 SI-18C4:MA-B1
73 SI-19C1:MA-B1 SI-19C1:MA-B1 SI-19C1:MA-B1
74 SI-19C2:MA-B2 SI-19C2:MA-B2 SI-19C2:MA-B2
75 SI-19C3:MA-B2 SI-19C3:MA-B2 SI-19C3:MA-B2
76 SI-19C4:MA-B1 SI-19C4:MA-B1 SI-19C4:MA-B1
77 SI-20C1:MA-B1 SI-20C1:MA-B1 SI-20C1:MA-B1
78 SI-20C2:MA-B2 SI-20C2:MA-B2 SI-20C2:MA-B2
79 SI-20C3:MA-B2 SI-20C3:MA-B2 SI-20C3:MA-B2
80 SI-20C4:MA-B1 SI-20C4:MA-B1 SI-20C4:MA-B1

Storage Ring Quadrupole Families

Table 35: Storage Ring Dispersive Quadrupole Families
SI-Fam:MA-Q1 SI-Fam:MA-Q2 SI-Fam:MA-Q3 SI-Fam:MA-Q4
1 SI-01C1:MA-Q1 SI-01C1:MA-Q2 SI-01C2:MA-Q3 SI-01C2:MA-Q4
2 SI-01C4:MA-Q1 SI-01C4:MA-Q2 SI-01C3:MA-Q3 SI-01C3:MA-Q4
3 SI-02C1:MA-Q1 SI-02C1:MA-Q2 SI-02C2:MA-Q3 SI-02C2:MA-Q4
4 SI-02C4:MA-Q1 SI-02C4:MA-Q2 SI-02C3:MA-Q3 SI-02C3:MA-Q4
5 SI-03C1:MA-Q1 SI-03C1:MA-Q2 SI-03C2:MA-Q3 SI-03C2:MA-Q4
6 SI-03C4:MA-Q1 SI-03C4:MA-Q2 SI-03C3:MA-Q3 SI-03C3:MA-Q4
7 SI-04C1:MA-Q1 SI-04C1:MA-Q2 SI-04C2:MA-Q3 SI-04C2:MA-Q4
8 SI-04C4:MA-Q1 SI-04C4:MA-Q2 SI-04C3:MA-Q3 SI-04C3:MA-Q4
9 SI-05C1:MA-Q1 SI-05C1:MA-Q2 SI-05C2:MA-Q3 SI-05C2:MA-Q4
10 SI-05C4:MA-Q1 SI-05C4:MA-Q2 SI-05C3:MA-Q3 SI-05C3:MA-Q4
11 SI-06C1:MA-Q1 SI-06C1:MA-Q2 SI-06C2:MA-Q3 SI-06C2:MA-Q4
12 SI-06C4:MA-Q1 SI-06C4:MA-Q2 SI-06C3:MA-Q3 SI-06C3:MA-Q4
13 SI-07C1:MA-Q1 SI-07C1:MA-Q2 SI-07C2:MA-Q3 SI-07C2:MA-Q4
14 SI-07C4:MA-Q1 SI-07C4:MA-Q2 SI-07C3:MA-Q3 SI-07C3:MA-Q4
15 SI-08C1:MA-Q1 SI-08C1:MA-Q2 SI-08C2:MA-Q3 SI-08C2:MA-Q4
16 SI-08C4:MA-Q1 SI-08C4:MA-Q2 SI-08C3:MA-Q3 SI-08C3:MA-Q4
17 SI-09C1:MA-Q1 SI-09C1:MA-Q2 SI-09C2:MA-Q3 SI-09C2:MA-Q4
18 SI-09C4:MA-Q1 SI-09C4:MA-Q2 SI-09C3:MA-Q3 SI-09C3:MA-Q4
19 SI-10C1:MA-Q1 SI-10C1:MA-Q2 SI-10C2:MA-Q3 SI-10C2:MA-Q4
20 SI-10C4:MA-Q1 SI-10C4:MA-Q2 SI-10C3:MA-Q3 SI-10C3:MA-Q4
21 SI-11C1:MA-Q1 SI-11C1:MA-Q2 SI-11C2:MA-Q3 SI-11C2:MA-Q4
22 SI-11C4:MA-Q1 SI-11C4:MA-Q2 SI-11C3:MA-Q3 SI-11C3:MA-Q4
23 SI-12C1:MA-Q1 SI-12C1:MA-Q2 SI-12C2:MA-Q3 SI-12C2:MA-Q4
24 SI-12C4:MA-Q1 SI-12C4:MA-Q2 SI-12C3:MA-Q3 SI-12C3:MA-Q4
25 SI-13C1:MA-Q1 SI-13C1:MA-Q2 SI-13C2:MA-Q3 SI-13C2:MA-Q4
26 SI-13C4:MA-Q1 SI-13C4:MA-Q2 SI-13C3:MA-Q3 SI-13C3:MA-Q4
27 SI-14C1:MA-Q1 SI-14C1:MA-Q2 SI-14C2:MA-Q3 SI-14C2:MA-Q4
28 SI-14C4:MA-Q1 SI-14C4:MA-Q2 SI-14C3:MA-Q3 SI-14C3:MA-Q4
29 SI-15C1:MA-Q1 SI-15C1:MA-Q2 SI-15C2:MA-Q3 SI-15C2:MA-Q4
30 SI-15C4:MA-Q1 SI-15C4:MA-Q2 SI-15C3:MA-Q3 SI-15C3:MA-Q4
31 SI-16C1:MA-Q1 SI-16C1:MA-Q2 SI-16C2:MA-Q3 SI-16C2:MA-Q4
32 SI-16C4:MA-Q1 SI-16C4:MA-Q2 SI-16C3:MA-Q3 SI-16C3:MA-Q4
33 SI-17C1:MA-Q1 SI-17C1:MA-Q2 SI-17C2:MA-Q3 SI-17C2:MA-Q4
34 SI-17C4:MA-Q1 SI-17C4:MA-Q2 SI-17C3:MA-Q3 SI-17C3:MA-Q4
35 SI-18C1:MA-Q1 SI-18C1:MA-Q2 SI-18C2:MA-Q3 SI-18C2:MA-Q4
36 SI-18C4:MA-Q1 SI-18C4:MA-Q2 SI-18C3:MA-Q3 SI-18C3:MA-Q4
37 SI-19C1:MA-Q1 SI-19C1:MA-Q2 SI-19C2:MA-Q3 SI-19C2:MA-Q4
38 SI-19C4:MA-Q1 SI-19C4:MA-Q2 SI-19C3:MA-Q3 SI-19C3:MA-Q4
39 SI-20C1:MA-Q1 SI-20C1:MA-Q2 SI-20C2:MA-Q3 SI-20C2:MA-Q4
40 SI-20C4:MA-Q1 SI-20C4:MA-Q2 SI-20C3:MA-Q3 SI-20C3:MA-Q4

Table 36: Storage Ring Non Dispersive Quadrupole Families
SI-Fam:MA-QFA SI-Fam:MA-QDA SI-Fam:MA-QFP SI-Fam:MA-QDP1 SI-Fam:MA-QDP2 SI-Fam:MA-QFB SI-Fam:MA-QDB1 SI-Fam:MA-QDB2
1 SI-01M1:MA-QFA SI-01M1:MA-QDA SI-03M1:MA-QFP SI-03M1:MA-QDP1 SI-03M1:MA-QDP2 SI-02M1:MA-QFB SI-02M1:MA-QDB1 SI-02M1:MA-QDB2
2 SI-01M2:MA-QFA SI-01M2:MA-QDA SI-03M2:MA-QFP SI-03M2:MA-QDP1 SI-03M2:MA-QDP2 SI-02M2:MA-QFB SI-02M2:MA-QDB1 SI-02M2:MA-QDB2
3 SI-05M1:MA-QFA SI-05M1:MA-QDA SI-07M1:MA-QFP SI-07M1:MA-QDP1 SI-07M1:MA-QDP2 SI-04M1:MA-QFB SI-04M1:MA-QDB1 SI-04M1:MA-QDB2
4 SI-05M2:MA-QFA SI-05M2:MA-QDA SI-07M2:MA-QFP SI-07M2:MA-QDP1 SI-07M2:MA-QDP2 SI-04M2:MA-QFB SI-04M2:MA-QDB1 SI-04M2:MA-QDB2
5 SI-09M1:MA-QFA SI-09M1:MA-QDA SI-11M1:MA-QFP SI-11M1:MA-QDP1 SI-11M1:MA-QDP2 SI-06M1:MA-QFB SI-06M1:MA-QDB1 SI-06M1:MA-QDB2
6 SI-09M2:MA-QFA SI-09M2:MA-QDA SI-11M2:MA-QFP SI-11M2:MA-QDP1 SI-11M2:MA-QDP2 SI-06M2:MA-QFB SI-06M2:MA-QDB1 SI-06M2:MA-QDB2
7 SI-13M1:MA-QFA SI-13M1:MA-QDA SI-15M1:MA-QFP SI-15M1:MA-QDP1 SI-15M1:MA-QDP2 SI-08M1:MA-QFB SI-08M1:MA-QDB1 SI-08M1:MA-QDB2
8 SI-13M2:MA-QFA SI-13M2:MA-QDA SI-15M2:MA-QFP SI-15M2:MA-QDP1 SI-15M2:MA-QDP2 SI-08M2:MA-QFB SI-08M2:MA-QDB1 SI-08M2:MA-QDB2
9 SI-17M1:MA-QFA SI-17M1:MA-QDA SI-19M1:MA-QFP SI-19M1:MA-QDP1 SI-19M1:MA-QDP2 SI-10M1:MA-QFB SI-10M1:MA-QDB1 SI-10M1:MA-QDB2
10 SI-17M2:MA-QFA SI-17M2:MA-QDA SI-19M2:MA-QFP SI-19M2:MA-QDP1 SI-19M2:MA-QDP2 SI-10M2:MA-QFB SI-10M2:MA-QDB1 SI-10M2:MA-QDB2
11 SI-12M1:MA-QFB SI-12M1:MA-QDB1 SI-12M1:MA-QDB2
12 SI-12M2:MA-QFB SI-12M2:MA-QDB1 SI-12M2:MA-QDB2
13 SI-14M1:MA-QFB SI-14M1:MA-QDB1 SI-14M1:MA-QDB2
14 SI-14M2:MA-QFB SI-14M2:MA-QDB1 SI-14M2:MA-QDB2
15 SI-16M1:MA-QFB SI-16M1:MA-QDB1 SI-16M1:MA-QDB2
16 SI-16M2:MA-QFB SI-16M2:MA-QDB1 SI-16M2:MA-QDB2
17 SI-18M1:MA-QFB SI-18M1:MA-QDB1 SI-18M1:MA-QDB2
18 SI-18M2:MA-QFB SI-18M2:MA-QDB1 SI-18M2:MA-QDB2
19 SI-20M1:MA-QFB SI-20M1:MA-QDB1 SI-20M1:MA-QDB2
20 SI-20M2:MA-QFB SI-20M2:MA-QDB1 SI-20M2:MA-QDB2

Storage Ring Sextupole Families

Table 37: Storage Ring Sextupole Families A
SI-Fam:MA-SFA0 SI-Fam:MA-SFA1 SI-Fam:MA-SFA2 SI-Fam:MA-SDA0 SI-Fam:MA-SDA1 SI-Fam:MA-SDA2 SI-Fam:MA-SDA3
1 SI-01M1:MA-SFA0 SI-01C1:MA-SFA1 SI-01C2:MA-SFA2 SI-01M1:MA-SDA0 SI-01C1:MA-SDA1 SI-01C1:MA-SDA2 SI-01C2:MA-SDA3
2 SI-01M2:MA-SFA0 SI-04C4:MA-SFA1 SI-04C3:MA-SFA2 SI-01M2:MA-SDA0 SI-04C4:MA-SDA1 SI-04C4:MA-SDA2 SI-04C3:MA-SDA3
3 SI-05M1:MA-SFA0 SI-05C1:MA-SFA1 SI-05C2:MA-SFA2 SI-05M1:MA-SDA0 SI-05C1:MA-SDA1 SI-05C1:MA-SDA2 SI-05C2:MA-SDA3
4 SI-05M2:MA-SFA0 SI-08C4:MA-SFA1 SI-08C3:MA-SFA2 SI-05M2:MA-SDA0 SI-08C4:MA-SDA1 SI-08C4:MA-SDA2 SI-08C3:MA-SDA3
5 SI-09M1:MA-SFA0 SI-09C1:MA-SFA1 SI-09C2:MA-SFA2 SI-09M1:MA-SDA0 SI-09C1:MA-SDA1 SI-09C1:MA-SDA2 SI-09C2:MA-SDA3
6 SI-09M2:MA-SFA0 SI-12C4:MA-SFA1 SI-12C3:MA-SFA2 SI-09M2:MA-SDA0 SI-12C4:MA-SDA1 SI-12C4:MA-SDA2 SI-12C3:MA-SDA3
7 SI-13M1:MA-SFA0 SI-13C1:MA-SFA1 SI-13C2:MA-SFA2 SI-13M1:MA-SDA0 SI-13C1:MA-SDA1 SI-13C1:MA-SDA2 SI-13C2:MA-SDA3
8 SI-13M2:MA-SFA0 SI-16C4:MA-SFA1 SI-16C3:MA-SFA2 SI-13M2:MA-SDA0 SI-16C4:MA-SDA1 SI-16C4:MA-SDA2 SI-16C3:MA-SDA3
9 SI-17M1:MA-SFA0 SI-17C1:MA-SFA1 SI-17C2:MA-SFA2 SI-17M1:MA-SDA0 SI-17C1:MA-SDA1 SI-17C1:MA-SDA2 SI-17C2:MA-SDA3
10 SI-17M2:MA-SFA0 SI-20C4:MA-SFA1 SI-20C3:MA-SFA2 SI-17M2:MA-SDA0 SI-20C4:MA-SDA1 SI-20C4:MA-SDA2 SI-20C3:MA-SDA3

Table 38: Storage Ring Sextupole Families B
SI-Fam:MA-SFB0 SI-Fam:MA-SFB1 SI-Fam:MA-SFB2 SI-Fam:MA-SDB0 SI-Fam:MA-SDB1 SI-Fam:MA-SDB2 SI-Fam:MA-SDB3
1 SI-02M1:MA-SFB0 SI-01C4:MA-SFB1 SI-01C3:MA-SFB2 SI-02M1:MA-SDB0 SI-01C4:MA-SDB1 SI-01C4:MA-SDB2 SI-01C3:MA-SDB3
2 SI-02M2:MA-SFB0 SI-02C1:MA-SFB1 SI-02C2:MA-SFB2 SI-02M2:MA-SDB0 SI-02C1:MA-SDB1 SI-02C1:MA-SDB2 SI-02C2:MA-SDB3
3 SI-04M1:MA-SFB0 SI-03C4:MA-SFB1 SI-03C3:MA-SFB2 SI-04M1:MA-SDB0 SI-03C4:MA-SDB1 SI-03C4:MA-SDB2 SI-03C3:MA-SDB3
4 SI-04M2:MA-SFB0 SI-04C1:MA-SFB1 SI-04C2:MA-SFB2 SI-04M2:MA-SDB0 SI-04C1:MA-SDB1 SI-04C1:MA-SDB2 SI-04C2:MA-SDB3
5 SI-06M1:MA-SFB0 SI-05C4:MA-SFB1 SI-05C3:MA-SFB2 SI-06M1:MA-SDB0 SI-05C4:MA-SDB1 SI-05C4:MA-SDB2 SI-05C3:MA-SDB3
6 SI-06M2:MA-SFB0 SI-06C1:MA-SFB1 SI-06C2:MA-SFB2 SI-06M2:MA-SDB0 SI-06C1:MA-SDB1 SI-06C1:MA-SDB2 SI-06C2:MA-SDB3
7 SI-08M1:MA-SFB0 SI-07C4:MA-SFB1 SI-07C3:MA-SFB2 SI-08M1:MA-SDB0 SI-07C4:MA-SDB1 SI-07C4:MA-SDB2 SI-07C3:MA-SDB3
8 SI-08M2:MA-SFB0 SI-08C1:MA-SFB1 SI-08C2:MA-SFB2 SI-08M2:MA-SDB0 SI-08C1:MA-SDB1 SI-08C1:MA-SDB2 SI-08C2:MA-SDB3
9 SI-10M1:MA-SFB0 SI-09C4:MA-SFB1 SI-09C3:MA-SFB2 SI-10M1:MA-SDB0 SI-09C4:MA-SDB1 SI-09C4:MA-SDB2 SI-09C3:MA-SDB3
10 SI-10M2:MA-SFB0 SI-10C1:MA-SFB1 SI-10C2:MA-SFB2 SI-10M2:MA-SDB0 SI-10C1:MA-SDB1 SI-10C1:MA-SDB2 SI-10C2:MA-SDB3
11 SI-12M1:MA-SFB0 SI-11C4:MA-SFB1 SI-11C3:MA-SFB2 SI-12M1:MA-SDB0 SI-11C4:MA-SDB1 SI-11C4:MA-SDB2 SI-11C3:MA-SDB3
12 SI-12M2:MA-SFB0 SI-12C1:MA-SFB1 SI-12C2:MA-SFB2 SI-12M2:MA-SDB0 SI-12C1:MA-SDB1 SI-12C1:MA-SDB2 SI-12C2:MA-SDB3
13 SI-14M1:MA-SFB0 SI-13C4:MA-SFB1 SI-13C3:MA-SFB2 SI-14M1:MA-SDB0 SI-13C4:MA-SDB1 SI-13C4:MA-SDB2 SI-13C3:MA-SDB3
14 SI-14M2:MA-SFB0 SI-14C1:MA-SFB1 SI-14C2:MA-SFB2 SI-14M2:MA-SDB0 SI-14C1:MA-SDB1 SI-14C1:MA-SDB2 SI-14C2:MA-SDB3
15 SI-16M1:MA-SFB0 SI-15C4:MA-SFB1 SI-15C3:MA-SFB2 SI-16M1:MA-SDB0 SI-15C4:MA-SDB1 SI-15C4:MA-SDB2 SI-15C3:MA-SDB3
16 SI-16M2:MA-SFB0 SI-16C1:MA-SFB1 SI-16C2:MA-SFB2 SI-16M2:MA-SDB0 SI-16C1:MA-SDB1 SI-16C1:MA-SDB2 SI-16C2:MA-SDB3
17 SI-18M1:MA-SFB0 SI-17C4:MA-SFB1 SI-17C3:MA-SFB2 SI-18M1:MA-SDB0 SI-17C4:MA-SDB1 SI-17C4:MA-SDB2 SI-17C3:MA-SDB3
18 SI-18M2:MA-SFB0 SI-18C1:MA-SFB1 SI-18C2:MA-SFB2 SI-18M2:MA-SDB0 SI-18C1:MA-SDB1 SI-18C1:MA-SDB2 SI-18C2:MA-SDB3
19 SI-20M1:MA-SFB0 SI-19C4:MA-SFB1 SI-19C3:MA-SFB2 SI-20M1:MA-SDB0 SI-19C4:MA-SDB1 SI-19C4:MA-SDB2 SI-19C3:MA-SDB3
20 SI-20M2:MA-SFB0 SI-20C1:MA-SFB1 SI-20C2:MA-SFB2 SI-20M2:MA-SDB0 SI-20C1:MA-SDB1 SI-20C1:MA-SDB2 SI-20C2:MA-SDB3

Table 39: Storage Ring Sextupole Families P
SI-Fam:MA-SFP0 SI-Fam:MA-SFP1 SI-Fam:MA-SFP2 SI-Fam:MA-SDP0 SI-Fam:MA-SDP1 SI-Fam:MA-SDP2 SI-Fam:MA-SDP3
1 SI-03M1:MA-SFP0 SI-02C4:MA-SFP1 SI-02C3:MA-SFP2 SI-03M1:MA-SDP0 SI-02C4:MA-SDP1 SI-02C4:MA-SDP2 SI-02C3:MA-SDP3
2 SI-03M2:MA-SFP0 SI-03C1:MA-SFP1 SI-03C2:MA-SFP2 SI-03M2:MA-SDP0 SI-03C1:MA-SDP1 SI-03C1:MA-SDP2 SI-03C2:MA-SDP3
3 SI-07M1:MA-SFP0 SI-06C4:MA-SFP1 SI-06C3:MA-SFP2 SI-07M1:MA-SDP0 SI-06C4:MA-SDP1 SI-06C4:MA-SDP2 SI-06C3:MA-SDP3
4 SI-07M2:MA-SFP0 SI-07C1:MA-SFP1 SI-07C2:MA-SFP2 SI-07M2:MA-SDP0 SI-07C1:MA-SDP1 SI-07C1:MA-SDP2 SI-07C2:MA-SDP3
5 SI-11M1:MA-SFP0 SI-10C4:MA-SFP1 SI-10C3:MA-SFP2 SI-11M1:MA-SDP0 SI-10C4:MA-SDP1 SI-10C4:MA-SDP2 SI-10C3:MA-SDP3
6 SI-11M2:MA-SFP0 SI-11C1:MA-SFP1 SI-11C2:MA-SFP2 SI-11M2:MA-SDP0 SI-11C1:MA-SDP1 SI-11C1:MA-SDP2 SI-11C2:MA-SDP3
7 SI-15M1:MA-SFP0 SI-14C4:MA-SFP1 SI-14C3:MA-SFP2 SI-15M1:MA-SDP0 SI-14C4:MA-SDP1 SI-14C4:MA-SDP2 SI-14C3:MA-SDP3
8 SI-15M2:MA-SFP0 SI-15C1:MA-SFP1 SI-15C2:MA-SFP2 SI-15M2:MA-SDP0 SI-15C1:MA-SDP1 SI-15C1:MA-SDP2 SI-15C2:MA-SDP3
9 SI-19M1:MA-SFP0 SI-18C4:MA-SFP1 SI-18C3:MA-SFP2 SI-19M1:MA-SDP0 SI-18C4:MA-SDP1 SI-18C4:MA-SDP2 SI-18C3:MA-SDP3
10 SI-19M2:MA-SFP0 SI-19C1:MA-SFP1 SI-19C2:MA-SFP2 SI-19M2:MA-SDP0 SI-19C1:MA-SDP1 SI-19C1:MA-SDP2 SI-19C2:MA-SDP3

Booster Magnets

Booster Dipoles

There is only one type of dipole in the Booster. It is a multi-functional magnet with dipolar, defocusing quadrular and sextupolar functions.

BO Dipole Magnet Specifications

Main Parameters

Table 40: Booster dipole main parameters
BD units
Power supply type monopolar1
Number of magnets 50
Deflection angle 7.2 °
Magnetic length 1.221 m
Physical length 1.206 m
Integrated quadrupole strength2 -0.2477 m-1
Integrated sextupole strength2 -2.5610 m-2
Full central gap 28.0 mm
Hardedge bending radius 9.7164 m
Hardedge quadrupole strength -0.2029 m-2
Hardedge sextupole strength -2.0975 m-3
Hardedge sagitta2 18.836 mm
Good field region (GFR) 6 mm
Homogeneity in GFR 4/10000
Maximum integrated field3 -1.3204 T·m
Injection Extraction
Integrated field2 -0.0629 -1.2575 T·m
Integrated quadrupole gradient2 0.1239 2.4788 T
Integrated sextupole gradient2 1.2814 25.6277 T·m-1
Hardedge field -0.0515 -1.0299 T
Hardedge quadrupole gradient 0.1015 2.0302 T·m-1
Hardedge sextupole gradient 1.0495 20.9891 T·m-2

1 Two monopolar power supplies will be used, each exciting alternate north and south pole coils of consecutive dipoles.

2 On the Runge-Kutta trajectory.

3 The maximum integrated field is 5% higher than the integrated field at extraction energy. This is required by the adopted ramping curve.

Electric Parameters

Table 41: Booster dipole electric parameters
BD units
Main coil current 1034.00 A
Main coil number of turns 12
Stored magnetic energy 2450.92 J
Magnet inductance 4.58 mH
Multipole Errors

Field analysis of the 3D model of the dipole shows very small residual multipoles. The larger systematic multipole values in Table 42, which do not compromise beam quality, are kept as specifications for measurements of the magnets in the future. Random multipole errors were chosen so that the rms multipolar contribution at r0 = 17.5 mm were 1/1000 of the nominal dipolar field. This contribution was then equally divided amoung the multipoles considered. On the other hand, normal sextupolar random 1σ value was set to 9 % of the maximum strength. All these values should be used as targets for the magnet modelling and measurements. Eventually the multipole values will be updated with measurement data and tested against beam dynamics simulations.

Table 42: Booster dipole multipole errors specification. Standard deviation for random multipole errors; simulations assume Gaussian distribution truncated at ±2σ.
Multipole error Systematic Random
Normal Skew
Dipoles
@r = 17.5 mm
B2/B0 (sextupole) -- 5.5×10-4 * 1.0×10-4
B3/B0 (octupole) +4.0×10-4 4.0×10-4 1.0×10-4
B4/B0 (decapole) -3.6×10-4 4.0×10-4 1.0×10-4
B5/B0 (12-pole) +2.7×10-4 4.0×10-4 1.0×10-4
B6/B0 (14-pole) -1.3×10-4 4.0×10-4 1.0×10-4
  • * This spec is replicated in the dipole alignment and rotation errors table
  • Actual designed dipole model shows numbers are that in accordance with these specs. (see fieldmap analysis)


Alignment and Excitation Errors

Table 43: Maximum absolute value of random alignment and excitation errors for the Booster Dipoles. The errors are generated with a Gaussian distribution truncated at ±1σ.
Dipoles
Transverse position, , 160 μm
Rotation around longitudinal axis 0.8 mrad
Excitation error (static or low frequency) 0.15  %
Dipole Gradient Error 2.4  %
Dipole Sextupolar Error 9  %

BO Dipole Magnet 3D Model

Figure 49: 3D drawing of the booster dipole model.
Figure 50: Field of the booster dipole model.
Fieldmap Analysis

Each dipole in the booster deflects the beam in 7.2 ° nominally. A 3D magnetic model has been created and its fieldmap analyzed for a excitation current corresponding to 3.0 GeV. The model has been optimized in a way that the beam trajectory is roughly centered at the good-field region of the magnet, corresponding to the axis x = 0 mm. At the longitudinal center of the magnet the trajectory starts at x = 9.045 mm. The reference point, defined as the interception of the straight lines asymptotically tangent to the up and downstream trajectory branches, is located at x = 28.572 mm, at the longitudinal center of the magnet. Multipoles from fieldmap analysis are all very well within specifications. A summary of the analysis for extraction energy can be found in analysis.txt at this folder. As for low energy, the corresponding file can be found in here.

Segmented Model

In order to take into account the s-dependent field profile of the BO dipoles a symmetric model was created.


Figure 51: Booster dipole By field on the trajectory calculated by Runge-Kutta integration and the adopted segmented model used in simulation codes. Only half dipole is shown in longitudinal direction. The slight variation in the flat region is caused by the curved trajectory in a straight magnet with transverse field gradient.

Table with segmented dipole model

Table 44: Booster dipole segmented model.
Segment# Length [m] Deflection [deg.] Field [T] K [m-2] * S [m-3] *
01 0.1960 1.158 -1.032 -0.228 -1.990
02 0.1920 1.143 -1.040 -0.212 -1.930
03 0.1820 1.096 -1.052 -0.186 -1.920
04 0.0100 0.051 -0.889 -0.249 -2.030
05 0.0100 0.037 -0.641 -0.170 -1.470
06 0.0130 0.033 -0.440 -0.062 -1.820
07 0.0170 0.029 -0.299 -0.011 -1.970
08 0.0200 0.022 -0.195 +0.005 -1.600
09 0.0300 0.018 -0.107 +0.005 -0.930
10 0.0500 0.012 -0.043 +0.002 -0.361

* K=B'/(Bρ), S=B"/(2Bρ)

Constructed from simulated fieldmap at extraction energy

BO Dipole Magnet Measurements

The magnetic measurement results for Booster dipoles at the extraction current, I= 991.63 A, are shown in Figure 52 , Figure 53 and Figure 54. The Hall probe measurement files can be found at this folder. The excitation curve measurement files can be found at this folder.


Figure 52: Integrated field on the Runge-Kutta trajectory, calculated for the Hall probe measurements of the Booster dipoles at the extraction current (991.63 A).
Figure 53: Integrated quadrupole gradient on the Runge-Kutta trajectory, calculated for the Hall probe measurements of the Booster dipoles at the extraction current (991.63 A).
Figure 54: Integrated sextupole gradient on the Runge-Kutta trajectory, calculated for the Hall probe measurements of the Booster dipoles at the extraction current (991.63 A).

Booster Quadrupoles

BO Quadrupole Magnets Specifications

Main Parameters

Table 45: Booster quadrupole main parameters
QF QD QS units
Power supply type monopolar bipolar bipolar
Magnet model name BQF BQD BQS
Number of magnets 50 25 1
Maximum integrated strength 1 0.425 -0.052 0.017 m-1
Magnetic length 0.228 0.100 0.100 m
Physical length 0.212 0.085 0.100 m
Maximum strength 1 1.865 -0.525 0.168 m-2
Bore diameter 40 40 40 mm
Maximum integrated field gradient 1 -4.255 0.525 0.168 T
Maximum field gradient 1 -18.664 5.254 1.600 T·m-1
Maximum field at pole tip 1 0.373 0.105 0.032 T

1 The maximum field gradient is 5% higher than the field gradient at extraction energy. This is required by the adopted ramping curve.

Electric Parameters

Table 46: Booster quadrupole electric parameters
QF QD QS units
Main coil current 113.97 30.42 9.64 A
Main coil number of turns 26.25 27.50 28.00
Stored magnetic energy 59.34 2.42 0.22 J
Magnet inductance 9.14 5.22 4.68 mH
Multipole Errors

Quadrupole QF

Table 47: Booster QF quadrupole multipole errors. Standard deviation for random multipole errors; simulations assume Gaussian distribution truncated at ±2σ.
Multipole error Systematic1 Random
Normal Skew
quadrupoles
@r = 17.5 mm
B2/B1 (sextupole) -- 7.0×10-4 1.0×10-3
B3/B1 (octupole) -- 4.0×10-4 5.0×10-4
B4/B1 (decapole) -- 4.0×10-4 1.0×10-4
B5/B1 (12-pole) -1.0×10-3 4.0×10-4 1.0×10-4
B6/B1 (14-pole) -- 4.0×10-4 1.0×10-4
B7/B1 (16-pole) -- 4.0×10-4 1.0×10-4
B8/B1 (18-pole) -- 4.0×10-4 1.0×10-4
B9/B1 (20-pole) +1.1×10-3 -- --
B13/B1 (28-pole) +8.0×10-5 -- --

1 Multipoles of prototype magnets measured with radial rotating coils

Quadrupole QD

Table 48: Booster QD quadrupole multipole errors. Standard deviation for random multipole errors; simulations assume Gaussian distribution truncated at ±2σ.
Multipole error Systematic1 Random
Normal Skew
quadrupoles
@r = 17.5 mm
B2/B1 (sextupole) -- 7.0×10-4 1.0×10-3
B3/B1 (octupole) -- 4.0×10-4 5.0×10-4
B4/B1 (decapole) -- 4.0×10-4 1.0×10-4
B5/B1 (12-pole) -4.7×10-3 4.0×10-4 1.0×10-4
B6/B1 (14-pole) -- 4.0×10-4 1.0×10-4
B7/B1 (16-pole) -- 4.0×10-4 1.0×10-4
B8/B1 (18-pole) -- 4.0×10-4 1.0×10-4
B9/B1 (20-pole) +1.2×10-3 -- --
B13/B1 (28-pole) +5.4×10-7 -- --

1Relative multipoles calculated around the Runge-Kutta trajectory for the latest QD model-02 fieldmap at 3 GeV

Quadrupole QS

Table 49: Booster QS quadrupole multipole errors. Standard deviation for random multipole errors; simulations assume Gaussian distribution truncated at ±2σ.
Multipole error Systematic1 Random
Normal Skew
quadrupoles
@r = 17.5 mm
A3/A1 (octupole) -1.1×10-3 -- --
A5/A1 (12-pole) +9.9×10-3 -- --
A7/A1 (16-pole) -8.7×10-3 -- --
A9/A1 (20-pole) +6.4×10-3 -- --

1Relative multipoles calculated around the Runge-Kutta trajectory for the latest QS model-01, fieldmap at 3 GeV

Alignment and Excitation Errors

Table 50: Maximum absolute value of random alignment and excitation errors for the Booster Quadrupoles. The errors are generated with a Gaussian distribution truncated at ±1σ.
Quadrupoles
Transverse position, , 160 μm
Rotation around longitudinal axis 0.8 mrad
Excitation error (static or low frequency) 0.3  %
Tracking error 100 ppm

BO Quadrupole 3D Models

Figure 55: 3D drawing of the QF booster quadrupole model.
Figure 56: Field of the booster QF quadrupole model.
Figure 57: 3D drawing of the QD booster quadrupole model.
Figure 58: Field of the booster QD quadrupole model.
Figure 59: 3D drawing of the QS booster quadrupole model.
Figure 60: Field of the booster QS quadrupole model.
Fieldmap Analysis

There will be two types of quadrupoles: QF and QD. QF quadrupoles are longer, 212-mm, whereas QD quadrupoles are shorter: 85-mm long. While QF magnets power supply is planed to be monopolar, the power supply for the QD family will be dipolar. 3D magnetic models for both QD and QF quadrupoles were analyzed. Nominal quadrupole field component in the booster dipoles provide most necessary defocusing for the optics and hence QD quadrupoles are installed in the lattice for optics correction purposes.

QF at Ejection Energy

A summary of the analysis can be found in analysis.txt at this folder.

QF at Injection Energy

A summary of the analysis can be found in analysis.txt at this folder.

QD at Ejection Energy

A summary of the analysis can be found in analysis.txt at this folder.

QD at Injection Energy

A summary of the analysis can be found in analysis.txt at this folder.

QS at Ejection Energy

A summary of the analysis can be found in analysis.txt at this folder.

Segmented Model

Currently booster quadrupoles are being modelled as a single segment within the hard-edge approximation.


Figure 61: Booster QF quadrupole strength on the trajectory calculated by Runge-Kutta integration and the adopted hard-edge model used in simulation codes. Only half quadrupole is shown in longitudinal direction.

Table 51: BO QF quadrupole segmented model (maximum current).
Segment# Length [m] Deflection [deg.] Field [T] K [m-2] * S [m-3] *
01 0.1140 0.000 -0.000e+00 +1.870e+00 +0.000e+00

* K=B'/(Bρ), S=B"/(2Bρ)


Figure 62: Booster QD quadrupole strength on the trajectory calculated by Runge-Kutta integration and the adopted hard-edge model used in simulation codes. Only half quadrupole is shown in longitudinal direction.

Table 52: BO QD quadrupole segmented model (maximum current).
Segment# Length [m] Deflection [deg.] Field [T] K [m-2] * S [m-3] *
01 0.0500 0.000 -0.000e+00 -5.000e-01 -0.000e+00

* K=B'/(Bρ), S=B"/(2Bρ)


Figure 63: Booster QS quadrupole strength on the trajectory calculated by Runge-Kutta integration and the adopted hard-edge model used in simulation codes. Only half quadrupole is shown in longitudinal direction.

Table 53: BO QS quadrupole segmented model (maximum current).
Segment# Length [m] Deflection [deg.] Field [T] K [m-2] * S [m-3] *
01 0.0500 0.000 -0.000e+00 -1.680e-01 -0.000e+00

* K=B'/(Bρ), S=B"/(2Bρ)

BO Quadrupole Magnet Measurements

The magnetic measurement results for Booster QF quadrupoles at high current, I=130 A, are shown in Figure 64 and Figure 65. The rotating coil measurement files can be found at this folder.


Figure 64: Rotating coil measurements of the Booster QF quadrupoles at high current (130 A).
Figure 65: Rotating coil measurements of the Booster QF quadrupoles at high current (130 A).


The magnetic measurement results for Booster QD quadrupoles at high current, I=32 A, are shown in Figure 66 and Figure 67. The rotating coil measurement files can be found at this folder.


Figure 66: Rotating coil measurements of the Booster QD quadrupoles at high current (32 A).
Figure 67: Rotating coil measurements of the Booster QD quadrupoles at high current (32 A).

Booster Sextupoles

BO Sextupole Magnet Specifications

Main Parameters

Table 54: Booster sextupole main parameters
SF SD units
Power supply type monopolar bipolar
Number of magnets 25 10
Maximum integrated strength 1 2.1 2.1 m-2
Magnetic length 0.105 0.105 m
Physical length 0.100 0.100 m
Maximum strength 1 20.0 20.0 m-3
Bore diameter 40 40 mm
Maximum integrated field gradient 1 21.015 21.015 T·m-1
Maximum gradient 1 200.1 200.1 T·m-2
Maximum field at pole tip 1 0.080 0.080 T

1 The maximum field gradient is 5% higher than the field gradient at extraction energy. This is required by the adopted ramping curve.

Electric Parameters

Table 55: Booster sextupole electric parameters
BS units
Main coil current 142.00 A
Main coil number of turns 3.00
Stored magnetic energy 0.98 J
Magnet inductance 0.10 mH
Multipole Errors

Table 56: Booster sextupole multipole errors. Standard deviation for random multipole errors; simulations assume Gaussian distribution truncated at ±2σ.
Multipole error Systematic1 Random
Normal Skew
sextupoles
@x = 17.5 mm
B3/B2 (octupole) -- 4.0×10-4 1.0×10-4
B4/B2 (decapole) -- 4.0×10-4 1.0×10-4
B5/B2 (12-pole) -- 4.0×10-4 1.0×10-4
B6/B2 (14-pole) -- 4.0×10-4 1.0×10-4
B7/B2 (16-pole) -- 4.0×10-4 1.0×10-4
B8/B2 (18-pole) -2.7×10-2 4.0×10-4 1.0×10-4
B9/B2 (20-pole) -- 4.0×10-4 1.0×10-4
B14/B2 (30-pole) -1.4×10-2 -- --

1Relative multipoles calculated around the Runge-Kutta trajectory for the latest sextupole model-03 fieldmap at 3 GeV

Alignment and Excitation Errors

Table 57: Maximum absolute value of random alignment and excitation errors for the Booster Sextupoles. The errors are generated with a Gaussian distribution truncated at ±1σ.
Sextupoles
Transverse position, , 160 μm
Rotation around longitudinal axis 0.8 mrad
Excitation error (static or low frequency) 0.3  %

BO Sextupole 3D Model

Figure 68: 3D drawing of the booster sextupole model.
Figure 69: Field of the booster sextupole model.
Fieldmap Analysis

There will be 25 focusing sextupoles (SF) and 10 defocusing sextupoles (SD) in the booster for chromaticity control. A 105-mm long 3D magnetic model for both SF and SD sextupoles was analyzed. SF family of magnets will be excited with a monopolar power supply whereas SD sextupoles family will be excited with a bipolar power supply. Analysis has been done for fieldmaps corresponding to injection and extraction energy currents. Since the magnetic field is very linear with the excitation current the two results are virtually identical with respect to field quality.

SD/SF at Ejection Energy

A summary of the analysis can be found in analysis.txt at this folder.

SD/SF at Injection Energy

A summary of the analysis can be found in analysis.txt at this folder.


Segmented Model

Currently booster sextupoles are being modelled as a single segment within the hard-edge approximation.


Figure 70: Booster sextupole strength on the trajectory calculated by Runge-Kutta integration and the adopted hard-edge model used in simulation codes. Only half sextupole is shown in longitudinal direction.


Table 58: BO S sextupole segmented model (maximum current).
Segment# Length [m] Deflection [deg.] Field [T] K [m-2] * S [m-3] *
01 0.0525 0.000 -0.000e+00 +0.000e+00 +1.900e+01

* K=B'/(Bρ), S=B"/(2Bρ)

BO Sextupole Magnet Measurements

The magnetic measurement results for Booster sextupoles at high current, I=150 A, are shown in Figure 71 and Figure 72. The rotating coil measurement files can be found at this folder.


Figure 71: Rotating coil measurements of the Booster sextupoles at high current (150 A).
Figure 72: Rotating coil measurements of the Booster sextupoles at high current (150 A).

Booster Correctors

BO Corrector Magnets Specifications

Main parameters

Table 59: Booster corrector main parameters
CH CV units
Power supply type bipolar bipolar
Number of magnets 25 25
Maximum kick angle @ 3 GeV 310 310 μrad
Magnetic length 0.150 0.150 m
Physical length 0.112 0.112 m
Central Gap 43.0 43.0 mm
Minimum Gap 40.0 40.0 mm
Maximum integrated field 3.10×10-3 3.10×10-3 T·m
Maximum field 2.07×10-2 2.07×10-2 T
Electric parameters

Table 60: Booster corrector electric parameters
CH/CV units
Maximum main coil current 9.35 A
Main coil number of turns 38.50
Stored magnetic energy 0.15 J
Magnet inductance 3.37 mH
Multipole Errors

The impact of residual multipole errors of reasonable correctors on the booster beam parameters is expected to be negligible and therefore no specification had been defined. The designed 3D model of these correctors showed acceptable multipole erros.

BO Corrector 3D Model

Orbit correctors for the booster use a single model for both horizontal and vertical deflections.

Figure 73: 3D drawing of the booster orbit correctors model.
Figure 74: Field of the booster orbit correctors model.
Fieldmap Analysis

There will be 25 horizontal and 25 vertical orbit correctors in the booster for orbit control. There will be one magnet model for both corrector types. Vertical corrector magnets are the same as horizontal correctors rotated by 90 degrees. The following are the analysis summaries created with fma-analysis.py

CH at Ejection Energy

A summary of the analysis can be found in analysis.txt at this folder.

CV at Ejection Energy

A summary of the analysis can be found in analysis.txt at this folder.


Segmented Model

Currently the hard-edge approximation is being used to model all booster correctors.


Figure 75: Field profile of segmented booster correctors model

Table 61: BO correctors half segmented model (maximum strength).
Segment# Length [m] Deflection [deg.] Field [T] K [m-2] * S [m-3] *
01 0.0750 0.000 -2.121e-02 +3.400e-06 +1.940e-02

* K=B'/(Bρ), S=B"/(2Bρ)

BO Corrector Magnet Measurements

The magnetic measurement results for Booster corrector at I=10 A are shown in Figure 76. The rotating coil measurement files can be found at this folder.

Figure 76: Rotating coil measurements of the Booster correctors at I=10 A.

Booster Magnets Ramping Curve

For beam energy ramping in the Booster from 0.15 GeV to 3.0 GeV, the booster main magnetic elements will follow cycling curves with main parameters defined in Table 62. The cycling waveform shape will be a rounded triangle with rise time longer than fall time, as shown in Figure 77, a scaled universal curve where the extraction current at 3.0 GeV is set to 1 A. The maximum current is 5% higher than the extraction current.


Table 62: Booster magnets ramping curve parameters.
Cycling frequency 2 Hz
Cycling period 500 ms
Number of points per cycle 2048
Uniform time interval between points 244 μs


Figure 77: Scaled ramping curve for Booster magnets with extraction current set to 1 A. The top graph shows the current vs time where the maximum current is 5% higher than the current at extraction energy. The curve is defined by the points (+) with either linear or cubic interpolations between them. The bottom graph shows the time derivative of the current.

Booster Magnets Installation

Table 63: Booster magnets installation.
Sector Girder Magnets BS BQF BQS BQD BD BC
B01 LS-CENTRAL-003-UNI-0029 CORR-QUAD -- BQF-042 -- -- -- BC-022
LS-DIPOLO-002-UNI-0011 DIP -- -- -- -- BD-010 --
B02 LS-BSKEW-001-UNI-0001 SEXT-QUAD-QSKEW BS-007 BQF-007 BQS-001 -- -- --
LS-DIPOLO-002-UNI-0018 QUAD-DIP-SEXT BS-035 -- -- BQD-002 BD-037 --
B03 LS-BCH-001-UNI-0003 CORR -- -- -- -- -- BC-027
LS-CENTRAL-003-UNI-0022 CORR-QUAD -- BQF-045 -- -- -- BC-021
LS-DIPOLO-003-UNI-0022 DIP -- -- -- -- BD-050 --
B04 LS-CENTRAL-002-UNI-0016 SEXT-QUAD BS-013 BQF-051 -- -- -- --
LS-DIPOLO-003-UNI-0023 QUAD-DIP-CORR -- -- -- BQD-007 BD-047 BC-062
B05 LS-CENTRAL-006-UNI-0051 CORR-QUAD -- BQF-043 -- -- -- BC-020
LS-DIPOLO-004-UNI-0040 DIP -- -- -- -- BD-044 --
B06 LS-CENTRAL-002-UNI-0011 SEXT-QUAD BS-014 BQF-024 -- -- -- --
LS-DIPOLO-002-UNI-0012 QUAD-DIP-CORR -- -- -- BQD-018 BD-008 BC-015
B07 LS-CENTRAL-003-UNI-0027 CORR-QUAD -- BQF-015 -- -- -- BC-037
LS-DIPOLO-001-UNI-0003 DIP-SEXT BS-034 -- -- -- BD-024 --
B08 LS-CENTRAL-001-UNI-0001 SEXT-QUAD BS-017 BQF-049 -- -- -- --
LS-DIPOLO-003-UNI-0024 QUAD-DIP-CORR -- -- -- BQD-017 BD-043 BC-060
B09 LS-CENTRAL-005-UNI-0050 CORR-QUAD -- BQF-016 -- -- -- BC-036
LS-DIPOLO-004-UNI-0038 DIP -- -- -- -- BD-026 --
B10 LS-CENTRAL-002-UNI-0014 SEXT-QUAD BS-016 BQF-034 -- -- -- --
LS-DIPOLO-005-UNI-0041 QUAD-DIP-CORR -- -- -- BQD-004 BD-027 BC-025
B11 LS-CENTRAL-001-UNI-0005 CORR-QUAD -- BQF-023 -- -- -- BC-040
LS-DIPOLO-002-UNI-0020 DIP -- -- -- -- BD-004 --
B12 LS-CENTRAL-002-UNI-0015 SEXT-QUAD BS-019 BQF-033 -- -- -- --
LS-DIPOLO-001-UNI-0009 QUAD-DIP-SEXT BS-039 -- -- BQD-006 BD-057 --
B13 LS-BCH-001-UNI-0005 CORR -- -- -- -- -- BC-024
LS-CENTRAL-003-UNI-0024 CORR-QUAD -- BQF-035 -- -- -- BC-035
LS-DIPOLO-005-UNI-0050 DIP -- -- -- -- BD-017 --
B14 LS-CENTRAL-002-UNI-0017 SEXT-QUAD BS-018 BQF-047 -- -- -- --
LS-DIPOLO-001-UNI-0005 QUAD-DIP-CORR -- -- -- BQD-024 BD-009 BC-047
B15 LS-CENTRAL-005-UNI-0041 CORR-QUAD -- BQF-037 -- -- -- BC-034
LS-DIPOLO-003-UNI-0026 DIP -- -- -- -- BD-028 --
B16 LS-CENTRAL-002-UNI-0018 SEXT-QUAD BS-020 BQF-053 -- -- -- --
LS-DIPOLO-005-UNI-0043 QUAD-DIP-CORR -- -- -- BQD-021 BD-041 BC-041
B17 LS-CENTRAL-006-UNI-0052 CORR-QUAD -- BQF-041 -- -- -- BC-033
LS-DIPOLO-003-UNI-0027 DIP-SEXT BS-043 -- -- -- BD-025 --
B18 LS-CENTRAL-002-UNI-0013 SEXT-QUAD BS-021 BQF-052 -- -- -- --
LS-DIPOLO-003-UNI-0025 QUAD-DIP-CORR -- -- -- BQD-016 BD-013 BC-044
B19 LS-CENTRAL-004-UNI-0035 CORR-QUAD -- BQF-011 -- -- -- BC-039
LS-DIPOLO-001-UNI-0004 DIP -- -- -- -- BD-031 --
B20 LS-CENTRAL-001-UNI-0007 SEXT-QUAD BS-022 BQF-032 -- -- -- --
LS-DIPOLO-001-UNI-0008 QUAD-DIP-CORR -- -- -- BQD-027 BD-054 BC-026
B21 LS-CENTRAL-004-UNI-0031 CORR-QUAD -- BQF-048 -- -- -- BC-013
LS-DIPOLO-006-UNI-0051 DIP -- -- -- -- BD-021 --
B22 LS-CENTRAL-004-UNI-0034 SEXT-QUAD BS-025 BQF-030 -- -- -- --
LS-DIPOLO-002-UNI-0016 QUAD-DIP-SEXT BS-037 -- -- BQD-014 BD-030 --
B23 LS-BCH-001-UNI-0001 CORR -- -- -- -- -- BC-019
LS-CENTRAL-005-UNI-0045 CORR-QUAD -- BQF-009 -- -- -- BC-010
LS-DIPOLO-005-UNI-0045 DIP -- -- -- -- BD-035 --
B24 LS-CENTRAL-001-UNI-0003 SEXT-QUAD BS-026 BQF-050 -- -- -- --
LS-DIPOLO-004-UNI-0031 QUAD-DIP-CORR -- -- -- BQD-012 BD-032 BC-059
B25 LS-CENTRAL-002-UNI-0020 CORR-QUAD -- BQF-025 -- -- -- BC-016
LS-DIPOLO-005-UNI-0042 DIP -- -- -- -- BD-007 --
B26 LS-CENTRAL-001-UNI-0002 SEXT-QUAD BS-029 BQF-040 -- -- -- --
LS-DIPOLO-004-UNI-0035 QUAD-DIP-CORR -- -- -- BQD-015 BD-018 BC-011
B27 LS-CENTRAL-004-UNI-0040 CORR-QUAD -- BQF-036 -- -- -- BC-009
LS-DIPOLO-002-UNI-0013 DIP-SEXT BS-042 -- -- -- BD-029 --
B28 LS-CENTRAL-003-UNI-0028 SEXT-QUAD BS-031 BQF-038 -- -- -- --
LS-DIPOLO-003-UNI-0028 QUAD-DIP-CORR -- -- -- BQD-026 BD-034 BC-029
B29 LS-CENTRAL-005-UNI-0047 CORR-QUAD -- BQF-056 -- -- -- BC-012
LS-DIPOLO-006-UNI-0052 DIP -- -- -- -- BD-014 --
B30 LS-CENTRAL-001-UNI-0006 SEXT-QUAD BS-023 BQF-031 -- -- -- --
LS-DIPOLO-004-UNI-0032 QUAD-DIP-CORR -- -- -- BQD-005 BD-052 BC-058
B31 LS-CENTRAL-005-UNI-0042 CORR-QUAD -- BQF-055 -- -- -- BC-053
LS-DIPOLO-002-UNI-0019 DIP -- -- -- -- BD-053 --
B32 LS-CENTRAL-004-UNI-0038 SEXT-QUAD BS-027 BQF-054 -- -- -- --
LS-DIPOLO-001-UNI-0010 QUAD-DIP-SEXT BS-036 -- -- BQD-009 BD-055 --
B33 LS-BCH-001-UNI-0002 CORR -- -- -- -- -- BC-018
LS-CENTRAL-003-UNI-0021 CORR-QUAD -- BQF-029 -- -- -- BC-054
LS-DIPOLO-005-UNI-0047 DIP -- -- -- -- BD-036 --
B34 LS-CENTRAL-001-UNI-0009 SEXT-QUAD BS-024 BQF-019 -- -- -- --
LS-DIPOLO-003-UNI-0029 QUAD-DIP-CORR -- -- -- BQD-011 BD-045 BC-014
B35 LS-CENTRAL-003-UNI-0026 CORR-QUAD -- BQF-028 -- -- -- BC-055
LS-DIPOLO-001-UNI-0002 DIP -- -- -- -- BD-046 --
B36 LS-CENTRAL-002-UNI-0012 SEXT-QUAD BS-015 BQF-020 -- -- -- --
LS-DIPOLO-001-UNI-0006 QUAD-DIP-CORR -- -- -- BQD-019 BD-022 BC-038
B37 LS-CENTRAL-003-UNI-0023 CORR-QUAD -- BQF-027 -- -- -- BC-049
LS-DIPOLO-005-UNI-0048 DIP-SEXT BS-040 -- -- -- BD-038 --
B38 LS-CENTRAL-001-UNI-0010 SEXT-QUAD BS-033 BQF-012 -- -- -- --
LS-DIPOLO-005-UNI-0049 QUAD-DIP-CORR -- -- -- BQD-022 BD-039 BC-048
B39 LS-CENTRAL-004-UNI-0037 CORR-QUAD -- BQF-046 -- -- -- BC-050
LS-DIPOLO-004-UNI-0034 DIP -- -- -- -- BD-042 --
B40 LS-CENTRAL-005-UNI-0049 SEXT-QUAD BS-030 BQF-022 -- -- -- --
LS-DIPOLO-002-UNI-0015 QUAD-DIP-CORR -- -- -- BQD-001 BD-016 BC-043
B41 LS-CENTRAL-003-UNI-0030 CORR-QUAD -- BQF-057 -- -- -- BC-051
LS-DIPOLO-004-UNI-0036 DIP -- -- -- -- BD-040 --
B42 LS-CENTRAL-005-UNI-0044 SEXT-QUAD BS-028 BQF-058 -- -- -- --
LS-DIPOLO-002-UNI-0017 QUAD-DIP-SEXT BS-041 -- -- BQD-023 BD-049 --
B43 LS-BCH-001-UNI-0004 CORR -- -- -- -- -- BC-028
LS-CENTRAL-005-UNI-0043 CORR-QUAD -- BQF-044 -- -- -- BC-056
LS-DIPOLO-003-UNI-0030 DIP -- -- -- -- BD-005 --
B44 LS-CENTRAL-004-UNI-0033 SEXT-QUAD BS-008 BQF-039 -- -- -- --
LS-DIPOLO-004-UNI-0037 QUAD-DIP-CORR -- -- -- BQD-010 BD-048 BC-057
B45 LS-CENTRAL-005-UNI-0046 CORR-QUAD -- BQF-018 -- -- -- BC-052
LS-DIPOLO-001-UNI-0007 DIP -- -- -- -- BD-023 --
B46 LS-CENTRAL-003-UNI-0025 SEXT-QUAD BS-010 BQF-014 -- -- -- --
LS-DIPOLO-004-UNI-0039 QUAD-DIP-CORR -- -- -- BQD-013 BD-051 BC-046
B47 LS-CENTRAL-001-UNI-0008 CORR-QUAD -- BQF-021 -- -- -- BC-017
LS-DIPOLO-003-UNI-0021 DIP-SEXT BS-038 -- -- -- BD-033 --
B48 LS-CENTRAL-004-UNI-0032 SEXT-QUAD BS-012 BQF-017 -- -- -- --
LS-DIPOLO-005-UNI-0044 QUAD-DIP-CORR -- -- -- BQD-003 BD-019 BC-045
B49 LS-CENTRAL-002-UNI-0019 CORR-QUAD -- BQF-026 -- -- -- BC-023
LS-DIPOLO-005-UNI-0046 DIP -- -- -- -- BD-011 --
B50 LS-CENTRAL-004-UNI-0039 SEXT-QUAD BS-032 BQF-013 -- -- -- --
LS-DIPOLO-002-UNI-0014 QUAD-DIP-CORR -- -- -- BQD-008 BD-020 BC-061

TB Transfer Line Magnets

TB Dipoles and septum

The TB dipoles and septum main parameters are shown in Table 64.

Table 64: Main parameters for LTB transfer line dipoles.
Spectrometer Dipole Septum
Number 1 3 1
Magnetic length 0.450 0.304 0.500 m
Physical length -- 0.2945 -- m
Deflection angle 15.0 15.0 21.75 °
Hardedge bending radius 1.719 1.161 1.317 m
Hardedge magnetic field 0.291 0.431 0.380 T
Quadrupole gradient 0 0 0 T/m
Hardedge sagitta 14.7 9.293 23.7 mm

Table 65: TB dipole electric parameters
TB Dipole units
Main coil current 254 A
Main coil number of turns 23
Stored magnetic energy 116.6 J
Magnet inductance 3.7 mH

TB Dipole Magnet 3D Model

Figure 78: 3D drawing of the TB dipole model.
Figure 79: Field of the TB dipole model.

Fieldmap Analysis

A 3D magnetic model has been created and its fieldmap analyzed. A summary of the analysis can be found in analysis.txt at this folder.


Segmented Model

In order to take into account the s-dependent field profile of the TB dipoles a symmetric model was created.


Figure 80: TB dipole By field on the trajectory calculated by Runge-Kutta integration and the adopted segmented model used in simulation codes. Only half dipole is shown in longitudinal direction.

Table with segmented dipole model

Table 66: TB dipole segmented model.
Segment# Length [m] Deflection [deg.] Field [T] K [m-2] * S [m-3] *
01 0.0800 3.966 -0.433 -0.001 -0.074
02 0.0200 0.990 -0.432 -0.021 -0.268
03 0.0200 0.940 -0.410 -0.644 -4.760
04 0.0200 0.645 -0.282 -1.630 -6.590
05 0.0200 0.382 -0.167 -0.775 -13.400
06 0.0200 0.244 -0.107 -0.374 -14.100
07 0.0300 0.205 -0.060 -0.213 -9.210
08 0.0300 0.129 -0.037 -0.138 -6.080

* K=B'/(Bρ), S=B"/(2Bρ)

Constructed from simulated fieldmap at nominal energy

TB Dipole Magnet Measurements

A summary of magnet field measurements will eventually be documented here.


TB Quadrupoles

The quadrupoles in the TB transfer line (TB-QD) use the same yoke as the Booster 8.5 cm long quadrupoles BQD (effective length of 10 cm). A new set of coils is used to allow higher gradient with a 10 A power supply. In the first TB sector (just after the last Linac accelerating structure), there are 4 quadrupoles (a quadrupole triplet and a focus quadrupole) that will be purchased as part of the Linac. The TB quadrupoles main parameters are shown in Table 67 and their detailed configuration in Table 69.


Table 67: Main parameters for LTB transfer line quadrupoles.
Part of Linac TB
Model name Linac BQD
Number 4 10
Physical length 0.050 / 0.100 0.085 m
Magnetic length -- 0.100 m
Maximum field gradient 10.0 8.000 T·m-1
Bore diameter 40.0 40.0 mm
Maximum field at pole tip 0.2 0.16 T

Table 68: TB quadrupole electric parameters
TB Quadrupole units
Main coil current 10.00 A
Main coil number of turns 140
Stored magnetic energy 5.62 J
Magnet inductance 112.4 mH

Table 69: Quadrupole configuration for TB transfer line modes.
Quadrupole Eff. Length [m] dB/dx [T/m] @ E=150 MeV
M1 M2 M3 M4 M5 M6
QD1 0.100 -8.42 -- -- -- -- --
QF1 0.100 13.15 -- -- -- -- --
QD2A 0.100 -5.00 -- -- -- -- --
QF2A 0.100 6.78 -- -- -- -- --
QF2B 0.100 2.90 -- -- -- -- --
QD2B 0.100 -2.98 -- -- -- -- --
QF3 0.100 7.96 -- -- -- -- --
QD3 0.100 -2.01 -- -- -- -- --
QF4 0.100 11.53 -- -- -- -- --
QD4 0.100 -7.08 -- -- -- -- --

TB Quadrupole Magnet 3D Model

Figure 81: 3D drawing of the TB quadrupole model.
Figure 82: Field of the TB quadrupole model.

Fieldmap Analysis

A 3D magnetic model has been created and its fieldmap analyzed. A summary of the analysis can be found in analysis.txt at this folder.


Segmented Model

In order to take into account the s-dependent field profile of the TB quadrupoles a symmetric model was created.


Figure 83: TB quadrupole By field on the trajectory calculated by Runge-Kutta integration and the adopted segmented model used in simulation codes. Only half quadrupole is shown in longitudinal direction.

Table with segmented quadrupole model

Table 70: TB quadrupole segmented model.
Segment# Length [m] Deflection [deg.] Field [T] K [m-2] * S [m-3] *
01 0.0500 0.000 -0.000e+00 +1.600e+01 +0.000e+00

* K=B'/(Bρ), S=B"/(2Bρ)

Constructed from simulated fieldmap at maximum excitation current.

TB Quadrupole Magnet Measurements

A summary of magnet field measurements will eventually be documented here.


TB Correctors

The main TB corrector parameters are shown in Table 71.

TB Corrector Magnet Specifications

Main Parameters

Table 71: Main parameters for LTB transfer line correctors.
Type of corrector Number Max. θ (mrad) ∫B.ds [T.m] @ E=150 MeV
Septum 1 ± 6.8 ± 3.4E-03
CH 5 ± 2.5 ± 1.25E-03
CV 6 ± 2.5 ± 1.25E-03

TB Corrector Magnet 3D Model

Figure 84: 3D drawing of the TB corrector model.
Figure 85: Field of the TB corrector model with its CH coils excited.
Fieldmap Analysis
CH

A summary of the analysis can be found in analysis.txt at this folder.

CV

A summary of the analysis can be found in analysis.txt at this folder.

Segmented Model

Currently the hard-edge approximation is being used to model TB correctors.


Figure 86: TB corrector By field on the trajectory calculated by Runge-Kutta integration and the adopted segmented model used in simulation codes. Only half of corrector is shown in longitudinal direction.

Table 72: TB corrector half segmented model (maximum strength).
Segment# Length [m] Deflection [deg.] Field [T] K [m-2] * S [m-3] *
01 0.0405 0.000 -1.916e-02 -4.400e-06 -4.840e+01

* K=B'/(Bρ), S=B"/(2Bρ)

TB Corrector Magnet Measurements

TS Transfer Line Magnets

TS Dipoles and septa

The TS dipoles and septum main parameters are shown in Table 73.

The TS dipoles are mechanically the same as the Booster dipoles but the deflection angle has been reduced from +7.2 ° (Booster) to +5.012 ° (TS). This is necessary to avoid overheating of the coils since BTS dipoles will operate in DC regime while Booster dipoles operate in CW mode.

Table 73: Main parameters for BTS septa and dipoles.
Dipoles Thin ext. septum Thick ext. septum Thick inj. septum Thin inj. septum
Number 3 1 1 2 1
Magnetic length 1.216 0.577 0.577 0.577 0.500 m
Physical length 1.206 -- -- -- -- m
Deflection angle +5.012 -3.600 -3.600 +3.600 +3.118 °
Hardedge bending radius 13.902 -9.188 -9.188 9.188 9.188 m
Integrated magnetic field 0.875 -0.629 -0.629 0.629 0.545 T·m
Integrated quadrupole strength -0.169 - - - - m-1
Hardedge sagitta 13.40 4.53 4.53 4.53 3.40 mm

Table 74: TS dipole electric parameters
TS Dipole units
Main coil current 680.10 A
Main coil number of turns 12
Stored magnetic energy 1075.88 J
Magnet inductance 4.65 mH

TS Dipole Magnet 3D Model

Same model as for BO dipoles.

Figure 87: 3D drawing of the booster dipole model.
Figure 88: Field of the booster dipole model.

Fieldmap Analysis

A 3D magnetic model has been created and its fieldmap analyzed. A summary of the analysis can be found in analysis.txt at this folder.


Segmented Model

In order to take into account the s-dependent field profile of the TS dipoles a symmetric model was created.


Figure 89: TS dipole By field on the trajectory calculated by Runge-Kutta integration and the adopted segmented model used in simulation codes. Only half dipole is shown in longitudinal direction.

Table with segmented dipole model

Table 75: TS dipole segmented model.
Segment# Length [m] Deflection [deg.] Field [T] K [m-2] * S [m-3] *
01 0.1960 0.808 -0.720 -0.151 -1.350
02 0.1920 0.796 -0.724 -0.144 -1.330
03 0.1820 0.761 -0.730 -0.132 -1.320
04 0.0100 0.035 -0.618 -0.158 -1.140
05 0.0100 0.025 -0.445 -0.100 -0.858
06 0.0130 0.023 -0.306 -0.036 -1.100
07 0.0170 0.020 -0.208 -0.007 -1.240
08 0.0200 0.016 -0.136 +0.002 -1.040
09 0.0300 0.013 -0.074 +0.002 -0.616
10 0.0500 0.009 -0.030 +0.001 -0.243

* K=B'/(Bρ), S=B"/(2Bρ)

Constructed from simulated fieldmap at nominal energy

TS Quadrupoles

Table 76 lists main specifications for TS quadrupoles (same as the storage ring quadrupoles) and Table 77 their detailed configuration.


Table 76: Main parameters for TS transfer line quadrupoles.
Magnet model name Q14 Q20
Number 5 3
Quadrupoles QF1A,QF1B,QD2,QD4A,QD4B QF2,QF3,QF4
Maximum gradient 37.23 45.43 T·m-1
Bore diameter 28 28 mm
Maximum field at pole tip 0.52 0.64 T


Table 77: BTS transfer line quadrupole configuration for modes M1 and M2.
Quadrupole Length [m] dB/dx [T/m] @ E=3 GeV
M1 M2
QF1A 0.14 16.4 17.6
QF1B 0.14 12.6 15
QD2 0.14 -34 -34.1
QF2 0.2 26.9 27.1
QF3 0.2 32.7 31.5
QD4A 0.14 -33.4 -32.1
QF4 0.2 40.8 40.5
QD4B 0.14 -17 -17.7


TS Correctors

Table 78 lists main specifications for TS correctors

Table 78: Main parameters for BTS transfer line correctors.
Length 0.1 m
Number of horizontal correctors 4
Number of septa used as horizontal correctors 2
Number of vertical correctors 6
Maximum strength ±0.35 mrad
Maximum field (E=3 GeV) ± 3.50E-03 T.m

Magnet Colors

Table 79: Magnet colors
dipoles RAL 5012
quadrupoles RAL 2008
sextupoles RAL 6021
correctors N6,5 Munsell
coils
girders RAL 9010
pulsed magnets RAL 3000